ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeneo Unicode version

Theorem zeneo 12036
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9427 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
zeneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )

Proof of Theorem zeneo
StepHypRef Expression
1 nbrne1 4052 . 2  |-  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B
)
21a1i 9 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2167    =/= wne 2367   class class class wbr 4033   2c2 9041   ZZcz 9326    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator