ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeneo Unicode version

Theorem zeneo 11808
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9292 follows immediately from the fact that a contradiction implies anything, see pm2.21i 636. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
zeneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )

Proof of Theorem zeneo
StepHypRef Expression
1 nbrne1 4001 . 2  |-  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B
)
21a1i 9 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    e. wcel 2136    =/= wne 2336   class class class wbr 3982   2c2 8908   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator