ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zneo Unicode version

Theorem zneo 9548
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 9543 . . 3  |-  -.  (
1  /  2 )  e.  ZZ
2 2cn 9181 . . . . . . 7  |-  2  e.  CC
3 zcn 9451 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
43adantr 276 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  CC )
5 mulcl 8126 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
62, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  e.  CC )
7 zcn 9451 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
87adantl 277 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  CC )
9 mulcl 8126 . . . . . . 7  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
102, 8, 9sylancr 414 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  CC )
11 1cnd 8162 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
126, 10, 11subaddd 8475 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  <-> 
( ( 2  x.  B )  +  1 )  =  ( 2  x.  A ) ) )
132a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  CC )
1413, 4, 8subdid 8560 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  ( A  -  B )
)  =  ( ( 2  x.  A )  -  ( 2  x.  B ) ) )
1514oveq1d 6016 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  /  2 ) )
16 zsubcl 9487 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
17 zcn 9451 . . . . . . . . . 10  |-  ( ( A  -  B )  e.  ZZ  ->  ( A  -  B )  e.  CC )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
19 2ap0 9203 . . . . . . . . . 10  |-  2 #  0
2019a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2 #  0 )
2118, 13, 20divcanap3d 8942 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( A  -  B ) )
2215, 21eqtr3d 2264 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  =  ( A  -  B ) )
2322, 16eqeltrd 2306 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ )
24 oveq1 6008 . . . . . . 7  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( 2  x.  A )  -  (
2  x.  B ) )  /  2 )  =  ( 1  / 
2 ) )
2524eleq1d 2298 . . . . . 6  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
2623, 25syl5ibcom 155 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
2712, 26sylbird 170 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  B )  +  1 )  =  ( 2  x.  A )  ->  ( 1  / 
2 )  e.  ZZ ) )
2827necon3bd 2443 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  ( 1  /  2 )  e.  ZZ  ->  ( (
2  x.  B )  +  1 )  =/=  ( 2  x.  A
) ) )
291, 28mpi 15 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  B )  +  1 )  =/=  ( 2  x.  A ) )
3029necomd 2486 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    - cmin 8317   # cap 8728    / cdiv 8819   2c2 9161   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447
This theorem is referenced by:  nneo  9550  zeo2  9553
  Copyright terms: Public domain W3C validator