ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zneo Unicode version

Theorem zneo 9176
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.)
Assertion
Ref Expression
zneo  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )

Proof of Theorem zneo
StepHypRef Expression
1 halfnz 9171 . . 3  |-  -.  (
1  /  2 )  e.  ZZ
2 2cn 8815 . . . . . . 7  |-  2  e.  CC
3 zcn 9083 . . . . . . . 8  |-  ( A  e.  ZZ  ->  A  e.  CC )
43adantr 274 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  CC )
5 mulcl 7771 . . . . . . 7  |-  ( ( 2  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  A
)  e.  CC )
62, 4, 5sylancr 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  e.  CC )
7 zcn 9083 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  CC )
87adantl 275 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  CC )
9 mulcl 7771 . . . . . . 7  |-  ( ( 2  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  e.  CC )
102, 8, 9sylancr 411 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  B
)  e.  CC )
11 1cnd 7806 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  1  e.  CC )
126, 10, 11subaddd 8115 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  <-> 
( ( 2  x.  B )  +  1 )  =  ( 2  x.  A ) ) )
132a1i 9 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2  e.  CC )
1413, 4, 8subdid 8200 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  ( A  -  B )
)  =  ( ( 2  x.  A )  -  ( 2  x.  B ) ) )
1514oveq1d 5797 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  /  2 ) )
16 zsubcl 9119 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
17 zcn 9083 . . . . . . . . . 10  |-  ( ( A  -  B )  e.  ZZ  ->  ( A  -  B )  e.  CC )
1816, 17syl 14 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  CC )
19 2ap0 8837 . . . . . . . . . 10  |-  2 #  0
2019a1i 9 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  2 #  0 )
2118, 13, 20divcanap3d 8579 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  ( A  -  B
) )  /  2
)  =  ( A  -  B ) )
2215, 21eqtr3d 2175 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  =  ( A  -  B ) )
2322, 16eqeltrd 2217 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ )
24 oveq1 5789 . . . . . . 7  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( 2  x.  A )  -  (
2  x.  B ) )  /  2 )  =  ( 1  / 
2 ) )
2524eleq1d 2209 . . . . . 6  |-  ( ( ( 2  x.  A
)  -  ( 2  x.  B ) )  =  1  ->  (
( ( ( 2  x.  A )  -  ( 2  x.  B
) )  /  2
)  e.  ZZ  <->  ( 1  /  2 )  e.  ZZ ) )
2623, 25syl5ibcom 154 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  A )  -  ( 2  x.  B
) )  =  1  ->  ( 1  / 
2 )  e.  ZZ ) )
2712, 26sylbird 169 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( 2  x.  B )  +  1 )  =  ( 2  x.  A )  ->  ( 1  / 
2 )  e.  ZZ ) )
2827necon3bd 2352 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( -.  ( 1  /  2 )  e.  ZZ  ->  ( (
2  x.  B )  +  1 )  =/=  ( 2  x.  A
) ) )
291, 28mpi 15 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2  x.  B )  +  1 )  =/=  ( 2  x.  A ) )
3029necomd 2395 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 2  x.  A
)  =/=  ( ( 2  x.  B )  +  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    =/= wne 2309   class class class wbr 3937  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    - cmin 7957   # cap 8367    / cdiv 8456   2c2 8795   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079
This theorem is referenced by:  nneo  9178  zeo2  9181
  Copyright terms: Public domain W3C validator