Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zneo | Unicode version |
Description: No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
Ref | Expression |
---|---|
zneo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnz 9308 | . . 3 | |
2 | 2cn 8949 | . . . . . . 7 | |
3 | zcn 9217 | . . . . . . . 8 | |
4 | 3 | adantr 274 | . . . . . . 7 |
5 | mulcl 7901 | . . . . . . 7 | |
6 | 2, 4, 5 | sylancr 412 | . . . . . 6 |
7 | zcn 9217 | . . . . . . . 8 | |
8 | 7 | adantl 275 | . . . . . . 7 |
9 | mulcl 7901 | . . . . . . 7 | |
10 | 2, 8, 9 | sylancr 412 | . . . . . 6 |
11 | 1cnd 7936 | . . . . . 6 | |
12 | 6, 10, 11 | subaddd 8248 | . . . . 5 |
13 | 2 | a1i 9 | . . . . . . . . . 10 |
14 | 13, 4, 8 | subdid 8333 | . . . . . . . . 9 |
15 | 14 | oveq1d 5868 | . . . . . . . 8 |
16 | zsubcl 9253 | . . . . . . . . . 10 | |
17 | zcn 9217 | . . . . . . . . . 10 | |
18 | 16, 17 | syl 14 | . . . . . . . . 9 |
19 | 2ap0 8971 | . . . . . . . . . 10 # | |
20 | 19 | a1i 9 | . . . . . . . . 9 # |
21 | 18, 13, 20 | divcanap3d 8712 | . . . . . . . 8 |
22 | 15, 21 | eqtr3d 2205 | . . . . . . 7 |
23 | 22, 16 | eqeltrd 2247 | . . . . . 6 |
24 | oveq1 5860 | . . . . . . 7 | |
25 | 24 | eleq1d 2239 | . . . . . 6 |
26 | 23, 25 | syl5ibcom 154 | . . . . 5 |
27 | 12, 26 | sylbird 169 | . . . 4 |
28 | 27 | necon3bd 2383 | . . 3 |
29 | 1, 28 | mpi 15 | . 2 |
30 | 29 | necomd 2426 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 caddc 7777 cmul 7779 cmin 8090 # cap 8500 cdiv 8589 c2 8929 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 |
This theorem is referenced by: nneo 9315 zeo2 9318 |
Copyright terms: Public domain | W3C validator |