HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdvdssubr 11801 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  -  M ) ) )
 
Theoremdvdsadd2b 11802 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremdvdslelemd 11803 Lemma for dvdsle 11804. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( K  x.  M )  =/= 
 N )
 
Theoremdvdsle 11804 The divisors of a positive integer are bounded by it. The proof does not use  /. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N ) )
 
Theoremdvdsleabs 11805 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  M  <_  ( abs `  N ) ) )
 
Theoremdvdsleabs2 11806 Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  ( abs `  M )  <_  ( abs `  N ) ) )
 
Theoremdvdsabseq 11807 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N ) )
 
Theoremdvdseq 11808 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M 
 ||  N  /\  N  ||  M ) )  ->  M  =  N )
 
Theoremdivconjdvds 11809 If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  M  =/=  0
 )  ->  ( N  /  M )  ||  N )
 
Theoremdvdsdivcl 11810* The complement of a divisor of  N is also a divisor of  N. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e.  { x  e. 
 NN  |  x  ||  N } )
 
Theoremdvdsflip 11811* An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
 |-  A  =  { x  e.  NN  |  x  ||  N }   &    |-  F  =  ( y  e.  A  |->  ( N  /  y ) )   =>    |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
 
Theoremdvdsssfz1 11812* The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
 
Theoremdvds1 11813 The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
 |-  ( M  e.  NN0  ->  ( M  ||  1  <->  M  =  1
 ) )
 
Theoremalzdvds 11814* Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( A. x  e. 
 ZZ  x  ||  N  <->  N  =  0 ) )
 
Theoremdvdsext 11815* Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. x  e.  NN0  ( A  ||  x  <->  B  ||  x ) ) )
 
Theoremfzm1ndvds 11816 No number between  1 and  M  - 
1 divides  M. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ( M  e.  NN  /\  N  e.  (
 1 ... ( M  -  1 ) ) ) 
 ->  -.  M  ||  N )
 
Theoremfzo0dvdseq 11817 Zero is the only one of the first 
A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( B  e.  (
 0..^ A )  ->  ( A  ||  B  <->  B  =  0
 ) )
 
Theoremfzocongeq 11818 Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( D  -  C )  ||  ( A  -  B )  <->  A  =  B ) )
 
TheoremaddmodlteqALT 11819 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10354 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
Theoremdvdsfac 11820 A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>=
 `  K ) ) 
 ->  K  ||  ( ! `  N ) )
 
Theoremdvdsexp 11821 A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  ( A ^ M ) 
 ||  ( A ^ N ) )
 
Theoremdvdsmod 11822 Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P 
 ||  ( K  mod  N )  <->  P  ||  K ) )
 
Theoremmulmoddvds 11823 If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  ( ( A  x.  B )  mod  N )  =  0 ) )
 
Theorem3dvdsdec 11824 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.,  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( 3  || ; A B  <->  3  ||  ( A  +  B )
 )
 
Theorem3dvds2dec 11825 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   =>    |-  ( 3  || ;; A B C  <->  3  ||  (
 ( A  +  B )  +  C )
 )
 
5.1.2  Even and odd numbers

The set  ZZ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 11829. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom  2 
||  N to say that " N is even" (which implies  N  e.  ZZ, see evenelz 11826) and  -.  2  ||  N to say that " N is odd" (under the assumption that  N  e.  ZZ). The previously proven theorems about even and odd numbers, like zneo 9313, zeo 9317, zeo2 9318, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 11848 and oddp1d2 11849. The corresponding theorems are zeneo 11830, zeo3 11827 and zeo4 11829.

 
Theoremevenelz 11826 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11754. (Contributed by AV, 22-Jun-2021.)
 |-  ( 2  ||  N  ->  N  e.  ZZ )
 
Theoremzeo3 11827 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/  -.  2  ||  N ) )
 
Theoremzeoxor 11828 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/_  -.  2  ||  N ) )
 
Theoremzeo4 11829 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  <->  -. 
 -.  2  ||  N ) )
 
Theoremzeneo 11830 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9313 follows immediately from the fact that a contradiction implies anything, see pm2.21i 641. (Contributed by AV, 22-Jun-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2 
 ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )
 
Theoremodd2np1lem 11831* Lemma for odd2np1 11832. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
 k  x.  2 )  =  N ) )
 
Theoremodd2np1 11832* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <-> 
 E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremeven2n 11833* An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
 |-  ( 2  ||  N  <->  E. n  e.  ZZ  (
 2  x.  n )  =  N )
 
Theoremoddm1even 11834 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  -  1 ) ) )
 
Theoremoddp1even 11835 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  +  1 ) ) )
 
Theoremoexpneg 11836 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
 |-  ( ( A  e.  CC  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( -u A ^ N )  =  -u ( A ^ N ) )
 
Theoremmod2eq0even 11837 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  0  <->  2 
 ||  N ) )
 
Theoremmod2eq1n2dvds 11838 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N )
 )
 
Theoremoddnn02np1 11839* A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
 |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremoddge22np1 11840* An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( -.  2  ||  N  <->  E. n  e.  NN  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremevennn02n 11841* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
 |-  ( N  e.  NN0  ->  ( 2  ||  N  <->  E. n  e.  NN0  (
 2  x.  n )  =  N ) )
 
Theoremevennn2n 11842* A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
 |-  ( N  e.  NN  ->  ( 2  ||  N  <->  E. n  e.  NN  (
 2  x.  n )  =  N ) )
 
Theorem2tp1odd 11843 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  =  ( ( 2  x.  A )  +  1 )
 )  ->  -.  2  ||  B )
 
Theoremmulsucdiv2z 11844 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
 |-  ( N  e.  ZZ  ->  ( ( N  x.  ( N  +  1
 ) )  /  2
 )  e.  ZZ )
 
Theoremsqoddm1div8z 11845 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( ( N ^ 2
 )  -  1 ) 
 /  8 )  e. 
 ZZ )
 
Theorem2teven 11846 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  =  ( 2  x.  A ) )  ->  2  ||  B )
 
Theoremzeo5 11847 An integer is either even or odd, version of zeo3 11827 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/  2  ||  ( N  +  1 ) ) )
 
Theoremevend2 11848 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9317 and zeo2 9318. (Contributed by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  <->  ( N  /  2 )  e.  ZZ ) )
 
Theoremoddp1d2 11849 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9317 and zeo2 9318. (Contributed by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  ( ( N  +  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremzob 11850 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
 |-  ( N  e.  ZZ  ->  ( ( ( N  +  1 )  / 
 2 )  e.  ZZ  <->  (
 ( N  -  1
 )  /  2 )  e.  ZZ ) )
 
Theoremoddm1d2 11851 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  ( ( N  -  1 )  /  2
 )  e.  ZZ )
 )
 
Theoremltoddhalfle 11852 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( M  <  ( N  /  2 )  <->  M  <_  ( ( N  -  1 )  / 
 2 ) ) )
 
Theoremhalfleoddlt 11853 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  M  e.  ZZ )  ->  ( ( N 
 /  2 )  <_  M 
 <->  ( N  /  2
 )  <  M )
 )
 
Theoremopoe 11854 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\ 
 -.  2  ||  B ) )  ->  2  ||  ( A  +  B ) )
 
Theoremomoe 11855 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\ 
 -.  2  ||  B ) )  ->  2  ||  ( A  -  B ) )
 
Theoremopeo 11856 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\  2  ||  B )
 )  ->  -.  2  ||  ( A  +  B ) )
 
Theoremomeo 11857 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( ( ( A  e.  ZZ  /\  -.  2  ||  A )  /\  ( B  e.  ZZ  /\  2  ||  B )
 )  ->  -.  2  ||  ( A  -  B ) )
 
Theoremm1expe 11858 Exponentiation of -1 by an even power. Variant of m1expeven 10523. (Contributed by AV, 25-Jun-2021.)
 |-  ( 2  ||  N  ->  ( -u 1 ^ N )  =  1 )
 
Theoremm1expo 11859 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( -u 1 ^ N )  =  -u 1 )
 
Theoremm1exp1 11860 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( ( -u 1 ^ N )  =  1  <-> 
 2  ||  N )
 )
 
Theoremnn0enne 11861 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
 |-  ( N  e.  NN  ->  ( ( N  / 
 2 )  e.  NN0  <->  ( N  /  2 )  e. 
 NN ) )
 
Theoremnn0ehalf 11862 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
 |-  ( ( N  e.  NN0  /\  2  ||  N ) 
 ->  ( N  /  2
 )  e.  NN0 )
 
Theoremnnehalf 11863 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( ( N  e.  NN  /\  2  ||  N )  ->  ( N  / 
 2 )  e.  NN )
 
Theoremnn0o1gt2 11864 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
 |-  ( ( N  e.  NN0  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( N  =  1  \/  2  <  N ) )
 
Theoremnno 11865 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( ( N  -  1 )  /  2
 )  e.  NN )
 
Theoremnn0o 11866 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
 |-  ( ( N  e.  NN0  /\  ( ( N  +  1 )  /  2
 )  e.  NN0 )  ->  ( ( N  -  1 )  /  2
 )  e.  NN0 )
 
Theoremnn0ob 11867 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
 |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  / 
 2 )  e.  NN0  <->  (
 ( N  -  1
 )  /  2 )  e.  NN0 ) )
 
Theoremnn0oddm1d2 11868 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  ( ( N  -  1
 )  /  2 )  e.  NN0 ) )
 
Theoremnnoddm1d2 11869 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
 |-  ( N  e.  NN  ->  ( -.  2  ||  N 
 <->  ( ( N  +  1 )  /  2
 )  e.  NN )
 )
 
Theoremz0even 11870 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
 |-  2  ||  0
 
Theoremn2dvds1 11871 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- 
 -.  2  ||  1
 
Theoremn2dvdsm1 11872 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
 |- 
 -.  2  ||  -u 1
 
Theoremz2even 11873 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
 |-  2  ||  2
 
Theoremn2dvds3 11874 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
 |- 
 -.  2  ||  3
 
Theoremz4even 11875 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
 |-  2  ||  4
 
Theorem4dvdseven 11876 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
 |-  ( 4  ||  N  ->  2  ||  N )
 
5.1.3  The division algorithm
 
Theoremdivalglemnn 11877* Lemma for divalg 11883. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E. r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalglemqt 11878 Lemma for divalg 11883. The  Q  =  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
 |-  ( ph  ->  D  e.  ZZ )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  Q  =  T )   &    |-  ( ph  ->  (
 ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  R  =  S )
 
Theoremdivalglemnqt 11879 Lemma for divalg 11883. The  Q  <  T case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ph  ->  D  e.  NN )   &    |-  ( ph  ->  R  e.  ZZ )   &    |-  ( ph  ->  S  e.  ZZ )   &    |-  ( ph  ->  Q  e.  ZZ )   &    |-  ( ph  ->  T  e.  ZZ )   &    |-  ( ph  ->  0  <_  S )   &    |-  ( ph  ->  R  <  D )   &    |-  ( ph  ->  ( ( Q  x.  D )  +  R )  =  ( ( T  x.  D )  +  S ) )   =>    |-  ( ph  ->  -.  Q  <  T )
 
Theoremdivalglemeunn 11880* Lemma for divalg 11883. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) ) )
 
Theoremdivalglemex 11881* Lemma for divalg 11883. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E. r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalglemeuneg 11882* Lemma for divalg 11883. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  <  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalg 11883* The division algorithm (theorem). Dividing an integer  N by a nonzero integer  D produces a (unique) quotient  q and a unique remainder  0  <_  r  <  ( abs `  D
). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  E! r  e.  ZZ  E. q  e.  ZZ  (
 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r )
 ) )
 
Theoremdivalgb 11884* Express the division algorithm as stated in divalg 11883 in terms of  ||. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  ZZ  /\  D  =/=  0 ) 
 ->  ( E! r  e. 
 ZZ  E. q  e.  ZZ  ( 0  <_  r  /\  r  <  ( abs `  D )  /\  N  =  ( ( q  x.  D )  +  r
 ) )  <->  E! r  e.  NN0  ( r  <  ( abs `  D )  /\  D  ||  ( N  -  r
 ) ) ) )
 
Theoremdivalg2 11885* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e. 
 NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
 
Theoremdivalgmod 11886 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor (compare divalg2 11885 and divalgb 11884). This demonstration theorem justifies the use of  mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  e.  NN0  /\  ( R  <  D  /\  D  ||  ( N  -  R ) ) ) ) )
 
Theoremdivalgmodcl 11887 The result of the  mod operator satisfies the requirements for the remainder  R in the division algorithm for a positive divisor. Variant of divalgmod 11886. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  R  e.  NN0 )  ->  ( R  =  ( N  mod  D )  <-> 
 ( R  <  D  /\  D  ||  ( N  -  R ) ) ) )
 
Theoremmodremain 11888* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( R  e.  NN0  /\  R  <  D ) )  ->  ( ( N  mod  D )  =  R  <->  E. z  e.  ZZ  ( ( z  x.  D )  +  R )  =  N )
 )
 
Theoremndvdssub 11889 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) )
 
Theoremndvdsadd 11890 Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  +  1,  N  +  2...  N  +  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  ->  ( D  ||  N  ->  -.  D  ||  ( N  +  K ) ) )
 
Theoremndvdsp1 11891 Special case of ndvdsadd 11890. If an integer  D greater than  1 divides  N, it does not divide  N  +  1. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  1  <  D ) 
 ->  ( D  ||  N  ->  -.  D  ||  ( N  +  1 )
 ) )
 
Theoremndvdsi 11892 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  A  e.  NN   &    |-  Q  e.  NN0   &    |-  R  e.  NN   &    |-  (
 ( A  x.  Q )  +  R )  =  B   &    |-  R  <  A   =>    |-  -.  A  ||  B
 
Theoremflodddiv4 11893 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
 |-  ( ( M  e.  ZZ  /\  N  =  ( ( 2  x.  M )  +  1 )
 )  ->  ( |_ `  ( N  /  4
 ) )  =  if ( 2  ||  M ,  ( M  /  2
 ) ,  ( ( M  -  1 ) 
 /  2 ) ) )
 
Theoremfldivndvdslt 11894 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( K  e.  ZZ  /\  ( L  e.  ZZ  /\  L  =/=  0
 )  /\  -.  L  ||  K )  ->  ( |_ `  ( K  /  L ) )  <  ( K 
 /  L ) )
 
Theoremflodddiv4lt 11895 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( |_ `  ( N  /  4
 ) )  <  ( N  /  4 ) )
 
Theoremflodddiv4t2lthalf 11896 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
 |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( ( |_ `  ( N 
 /  4 ) )  x.  2 )  < 
 ( N  /  2
 ) )
 
5.1.4  The greatest common divisor operator
 
Syntaxcgcd 11897 Extend the definition of a class to include the greatest common divisor operator.
 class  gcd
 
Definitiondf-gcd 11898* Define the  gcd operator. For example,  ( -u 6  gcd  9 )  =  3 (ex-gcd 13766). (Contributed by Paul Chapman, 21-Mar-2011.)
 |- 
 gcd  =  ( x  e.  ZZ ,  y  e. 
 ZZ  |->  if ( ( x  =  0  /\  y  =  0 ) ,  0 ,  sup ( { n  e.  ZZ  |  ( n  ||  x  /\  n  ||  y ) } ,  RR ,  <  ) ) )
 
Theoremgcdmndc 11899 Decidablity lemma used in various proofs related to  gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID 
 ( M  =  0 
 /\  N  =  0 ) )
 
Theoremzsupcllemstep 11900* Lemma for zsupcl 11902. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
 |-  ( ( ph  /\  n  e.  ( ZZ>= `  M )
 )  -> DECID  ps )   =>    |-  ( K  e.  ( ZZ>=
 `  M )  ->  ( ( ( ph  /\ 
 A. n  e.  ( ZZ>=
 `  K )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
 x  ->  E. z  e.  { n  e.  ZZ  |  ps } y  < 
 z ) ) ) 
 ->  ( ( ph  /\  A. n  e.  ( ZZ>= `  ( K  +  1
 ) )  -.  ps )  ->  E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ps }  -.  x  <  y  /\  A. y  e.  RR  ( y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ps }
 y  <  z )
 ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >