Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | fprodap0f 11801* | 
A finite product of terms apart from zero is apart from zero.  A version
       of fprodap0 11786 using bound-variable hypotheses instead of
distinct
       variable conditions.  (Contributed by Glauco Siliprandi, 5-Apr-2020.)
       (Revised by Jim Kingdon, 30-Aug-2024.)
 | 
                                     
                                            #                          #    | 
|   | 
| Theorem | fprodge0 11802* | 
If all the terms of a finite product are nonnegative, so is the product.
       (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 | 
                                     
                                           
                  
               | 
|   | 
| Theorem | fprodeq0g 11803* | 
Any finite product containing a zero term is itself zero.  (Contributed
       by Glauco Siliprandi, 5-Apr-2020.)
 | 
                                     
                                                  
                                              | 
|   | 
| Theorem | fprodge1 11804* | 
If all of the terms of a finite product are greater than or equal to
        , so is the
product.  (Contributed by Glauco Siliprandi,
       5-Apr-2020.)
 | 
                                     
                                           
                  
               | 
|   | 
| Theorem | fprodle 11805* | 
If all the terms of two finite products are nonnegative and compare, so
       do the two products.  (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 | 
                                     
                                           
                                                              
                                      | 
|   | 
| Theorem | fprodmodd 11806* | 
If all factors of two finite products are equal modulo  , the
       products are equal modulo  .  (Contributed by AV, 7-Jul-2021.)
 | 
                                                       
                                                  
                                                                
             | 
|   | 
| 4.10  Elementary
 trigonometry
 | 
|   | 
| 4.10.1  The exponential, sine, and cosine
 functions
 | 
|   | 
| Syntax | ce 11807 | 
Extend class notation to include the exponential function.
 | 
    | 
|   | 
| Syntax | ceu 11808 | 
Extend class notation to include Euler's constant   = 2.71828....
 | 
    | 
|   | 
| Syntax | csin 11809 | 
Extend class notation to include the sine function.
 | 
    | 
|   | 
| Syntax | ccos 11810 | 
Extend class notation to include the cosine function.
 | 
    | 
|   | 
| Syntax | ctan 11811 | 
Extend class notation to include the tangent function.
 | 
    | 
|   | 
| Syntax | cpi 11812 | 
Extend class notation to include the constant pi,   = 3.14159....
 | 
    | 
|   | 
| Definition | df-ef 11813* | 
Define the exponential function.  Its value at the complex number  
       is       and is called the "exponential of  "; see
       efval 11826.  (Contributed by NM, 14-Mar-2005.)
 | 
     
                                  | 
|   | 
| Definition | df-e 11814 | 
Define Euler's constant   = 2.71828....  (Contributed by NM,
       14-Mar-2005.)
 | 
            | 
|   | 
| Definition | df-sin 11815 | 
Define the sine function.  (Contributed by NM, 14-Mar-2005.)
 | 
     
                                                    | 
|   | 
| Definition | df-cos 11816 | 
Define the cosine function.  (Contributed by NM, 14-Mar-2005.)
 | 
     
                                              | 
|   | 
| Definition | df-tan 11817 | 
Define the tangent function.  We define it this way for cmpt 4094,
which
       requires the form            . 
(Contributed by Mario
       Carneiro, 14-Mar-2014.)
 | 
     
                                        | 
|   | 
| Definition | df-pi 11818 | 
Define the constant pi,   = 3.14159..., which is the smallest
       positive number whose sine is zero.  Definition of   in [Gleason]
       p. 311.  (Contributed by Paul Chapman, 23-Jan-2008.)  (Revised by AV,
       14-Sep-2020.)
 | 
      inf                        | 
|   | 
| Theorem | eftcl 11819 | 
Closure of a term in the series expansion of the exponential function.
     (Contributed by Paul Chapman, 11-Sep-2007.)
 | 
                                          | 
|   | 
| Theorem | reeftcl 11820 | 
The terms of the series expansion of the exponential function at a real
     number are real.  (Contributed by Paul Chapman, 15-Jan-2008.)
 | 
                                          | 
|   | 
| Theorem | eftabs 11821 | 
The absolute value of a term in the series expansion of the exponential
     function.  (Contributed by Paul Chapman, 23-Nov-2007.)
 | 
                                                                | 
|   | 
| Theorem | eftvalcn 11822* | 
The value of a term in the series expansion of the exponential function.
       (Contributed by Paul Chapman, 21-Aug-2007.)  (Revised by Jim Kingdon,
       8-Dec-2022.)
 | 
            
                                                    
                    | 
|   | 
| Theorem | efcllemp 11823* | 
Lemma for efcl 11829.  The series that defines the exponential
function
       converges.  The ratio test cvgratgt0 11698 is used to show convergence.
       (Contributed by NM, 26-Apr-2005.)  (Revised by Jim Kingdon,
       8-Dec-2022.)
 | 
            
                                
                                                    
                  
             
    
   | 
|   | 
| Theorem | efcllem 11824* | 
Lemma for efcl 11829.  The series that defines the exponential
function
       converges.  (Contributed by NM, 26-Apr-2005.)  (Revised by Jim Kingdon,
       8-Dec-2022.)
 | 
            
                              
                          | 
|   | 
| Theorem | ef0lem 11825* | 
The series defining the exponential function converges in the (trivial)
       case of a zero argument.  (Contributed by Steve Rodriguez, 7-Jun-2006.)
       (Revised by Mario Carneiro, 28-Apr-2014.)
 | 
            
                              
                   
    | 
|   | 
| Theorem | efval 11826* | 
Value of the exponential function.  (Contributed by NM, 8-Jan-2006.)
       (Revised by Mario Carneiro, 10-Nov-2013.)
 | 
                  
                         | 
|   | 
| Theorem | esum 11827 | 
Value of Euler's constant   = 2.71828....  (Contributed by Steve
     Rodriguez, 5-Mar-2006.)
 | 
                         | 
|   | 
| Theorem | eff 11828 | 
Domain and codomain of the exponential function.  (Contributed by Paul
       Chapman, 22-Oct-2007.)  (Proof shortened by Mario Carneiro,
       28-Apr-2014.)
 | 
        | 
|   | 
| Theorem | efcl 11829 | 
Closure law for the exponential function.  (Contributed by NM,
       8-Jan-2006.)  (Revised by Mario Carneiro, 10-Nov-2013.)
 | 
                  
    | 
|   | 
| Theorem | efval2 11830* | 
Value of the exponential function.  (Contributed by Mario Carneiro,
       29-Apr-2014.)
 | 
            
                              
              
               | 
|   | 
| Theorem | efcvg 11831* | 
The series that defines the exponential function converges to it.
       (Contributed by NM, 9-Jan-2006.)  (Revised by Mario Carneiro,
       28-Apr-2014.)
 | 
            
                              
                   
        | 
|   | 
| Theorem | efcvgfsum 11832* | 
Exponential function convergence in terms of a sequence of partial
       finite sums.  (Contributed by NM, 10-Jan-2006.)  (Revised by Mario
       Carneiro, 28-Apr-2014.)
 | 
            
                                                          | 
|   | 
| Theorem | reefcl 11833 | 
The exponential function is real if its argument is real.  (Contributed
       by NM, 27-Apr-2005.)  (Revised by Mario Carneiro, 28-Apr-2014.)
 | 
                  
    | 
|   | 
| Theorem | reefcld 11834 | 
The exponential function is real if its argument is real.  (Contributed
       by Mario Carneiro, 29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | ere 11835 | 
Euler's constant   =
2.71828... is a real number.  (Contributed by
     NM, 19-Mar-2005.)  (Revised by Steve Rodriguez, 8-Mar-2006.)
 | 
        | 
|   | 
| Theorem | ege2le3 11836 | 
Euler's constant   =
2.71828... is bounded by 2 and 3.
       (Contributed by NM, 20-Mar-2005.)  (Proof shortened by Mario Carneiro,
       28-Apr-2014.)
 | 
                                             
                                           
    | 
|   | 
| Theorem | ef0 11837 | 
Value of the exponential function at 0.  Equation 2 of [Gleason] p. 308.
     (Contributed by Steve Rodriguez, 27-Jun-2006.)  (Revised by Mario
     Carneiro, 28-Apr-2014.)
 | 
            | 
|   | 
| Theorem | efcj 11838 | 
The exponential of a complex conjugate.  Equation 3 of [Gleason] p. 308.
       (Contributed by NM, 29-Apr-2005.)  (Revised by Mario Carneiro,
       28-Apr-2014.)
 | 
                                  | 
|   | 
| Theorem | efaddlem 11839* | 
Lemma for efadd 11840 (exponential function addition law). 
(Contributed by
       Mario Carneiro, 29-Apr-2014.)
 | 
            
                               
                                                                                                                                                           | 
|   | 
| Theorem | efadd 11840 | 
Sum of exponents law for exponential function.  (Contributed by NM,
       10-Jan-2006.)  (Proof shortened by Mario Carneiro, 29-Apr-2014.)
 | 
                            
                        | 
|   | 
| Theorem | efcan 11841 | 
Cancellation law for exponential function.  Equation 27 of [Rudin] p. 164.
     (Contributed by NM, 13-Jan-2006.)
 | 
                           
      | 
|   | 
| Theorem | efap0 11842 | 
The exponential of a complex number is apart from zero.  (Contributed by
       Jim Kingdon, 12-Dec-2022.)
 | 
                 #    | 
|   | 
| Theorem | efne0 11843 | 
The exponential of a complex number is nonzero.  Corollary 15-4.3 of
     [Gleason] p. 309.  The same result also
holds with not equal replaced by
     apart, as seen at efap0 11842 (which will be more useful in most
contexts).
     (Contributed by NM, 13-Jan-2006.)  (Revised by Mario Carneiro,
     29-Apr-2014.)
 | 
                      | 
|   | 
| Theorem | efneg 11844 | 
The exponential of the opposite is the inverse of the exponential.
     (Contributed by Mario Carneiro, 10-May-2014.)
 | 
                   
              | 
|   | 
| Theorem | eff2 11845 | 
The exponential function maps the complex numbers to the nonzero complex
     numbers.  (Contributed by Paul Chapman, 16-Apr-2008.)
 | 
                | 
|   | 
| Theorem | efsub 11846 | 
Difference of exponents law for exponential function.  (Contributed by
     Steve Rodriguez, 25-Nov-2007.)
 | 
                                                    | 
|   | 
| Theorem | efexp 11847 | 
The exponential of an integer power.  Corollary 15-4.4 of [Gleason]
       p. 309, restricted to integers.  (Contributed by NM, 13-Jan-2006.)
       (Revised by Mario Carneiro, 5-Jun-2014.)
 | 
                                              | 
|   | 
| Theorem | efzval 11848 | 
Value of the exponential function for integers.  Special case of efval 11826.
     Equation 30 of [Rudin] p. 164.  (Contributed
by Steve Rodriguez,
     15-Sep-2006.)  (Revised by Mario Carneiro, 5-Jun-2014.)
 | 
                  
        | 
|   | 
| Theorem | efgt0 11849 | 
The exponential of a real number is greater than 0.  (Contributed by Paul
     Chapman, 21-Aug-2007.)  (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
                      | 
|   | 
| Theorem | rpefcl 11850 | 
The exponential of a real number is a positive real.  (Contributed by
     Mario Carneiro, 10-Nov-2013.)
 | 
                  
    | 
|   | 
| Theorem | rpefcld 11851 | 
The exponential of a real number is a positive real.  (Contributed by
       Mario Carneiro, 29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | eftlcvg 11852* | 
The tail series of the exponential function are convergent.
       (Contributed by Mario Carneiro, 29-Apr-2014.)
 | 
            
                                                                  | 
|   | 
| Theorem | eftlcl 11853* | 
Closure of the sum of an infinite tail of the series defining the
       exponential function.  (Contributed by Paul Chapman, 17-Jan-2008.)
       (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
            
                                                                    | 
|   | 
| Theorem | reeftlcl 11854* | 
Closure of the sum of an infinite tail of the series defining the
       exponential function.  (Contributed by Paul Chapman, 17-Jan-2008.)
       (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
            
                                                                    | 
|   | 
| Theorem | eftlub 11855* | 
An upper bound on the absolute value of the infinite tail of the series
       expansion of the exponential function on the closed unit disk.
       (Contributed by Paul Chapman, 19-Jan-2008.)  (Proof shortened by Mario
       Carneiro, 29-Apr-2014.)
 | 
            
                               
                                                                                                                                                                                                 
                                        | 
|   | 
| Theorem | efsep 11856* | 
Separate out the next term of the power series expansion of the
       exponential function.  The last hypothesis allows the separated terms to
       be rearranged as desired.  (Contributed by Paul Chapman, 23-Nov-2007.)
       (Revised by Mario Carneiro, 29-Apr-2014.)
 | 
            
                               
                                                                                   
                                                                                                            | 
|   | 
| Theorem | effsumlt 11857* | 
The partial sums of the series expansion of the exponential function at
       a positive real number are bounded by the value of the function.
       (Contributed by Paul Chapman, 21-Aug-2007.)  (Revised by Mario Carneiro,
       29-Apr-2014.)
 | 
            
                                
                                                                  | 
|   | 
| Theorem | eft0val 11858 | 
The value of the first term of the series expansion of the exponential
     function is 1.  (Contributed by Paul Chapman, 21-Aug-2007.)  (Revised by
     Mario Carneiro, 29-Apr-2014.)
 | 
                                | 
|   | 
| Theorem | ef4p 11859* | 
Separate out the first four terms of the infinite series expansion of
       the exponential function.  (Contributed by Paul Chapman, 19-Jan-2008.)
       (Revised by Mario Carneiro, 29-Apr-2014.)
 | 
            
                              
              
                      
                                        | 
|   | 
| Theorem | efgt1p2 11860 | 
The exponential of a positive real number is greater than the sum of the
       first three terms of the series expansion.  (Contributed by Mario
       Carneiro, 15-Sep-2014.)
 | 
                              
      
        | 
|   | 
| Theorem | efgt1p 11861 | 
The exponential of a positive real number is greater than 1 plus that
       number.  (Contributed by Mario Carneiro, 14-Mar-2014.)  (Revised by
       Mario Carneiro, 30-Apr-2014.)
 | 
                            | 
|   | 
| Theorem | efgt1 11862 | 
The exponential of a positive real number is greater than 1.
       (Contributed by Paul Chapman, 21-Aug-2007.)  (Revised by Mario Carneiro,
       30-Apr-2014.)
 | 
              
        | 
|   | 
| Theorem | efltim 11863 | 
The exponential function on the reals is strictly increasing.
       (Contributed by Paul Chapman, 21-Aug-2007.)  (Revised by Jim Kingdon,
       20-Dec-2022.)
 | 
                                              | 
|   | 
| Theorem | reef11 11864 | 
The exponential function on real numbers is one-to-one.  (Contributed by
       NM, 21-Aug-2008.)  (Revised by Jim Kingdon, 20-Dec-2022.)
 | 
                                              | 
|   | 
| Theorem | reeff1 11865 | 
The exponential function maps real arguments one-to-one to positive
       reals.  (Contributed by Steve Rodriguez, 25-Aug-2007.)  (Revised by
       Mario Carneiro, 10-Nov-2013.)
 | 
              | 
|   | 
| Theorem | eflegeo 11866 | 
The exponential function on the reals between 0 and 1 lies below the
       comparable geometric series sum.  (Contributed by Paul Chapman,
       11-Sep-2007.)
 | 
                                                                                          | 
|   | 
| Theorem | sinval 11867 | 
Value of the sine function.  (Contributed by NM, 14-Mar-2005.)  (Revised
       by Mario Carneiro, 10-Nov-2013.)
 | 
                  
                                           | 
|   | 
| Theorem | cosval 11868 | 
Value of the cosine function.  (Contributed by NM, 14-Mar-2005.)
       (Revised by Mario Carneiro, 10-Nov-2013.)
 | 
                  
                                     | 
|   | 
| Theorem | sinf 11869 | 
Domain and codomain of the sine function.  (Contributed by Paul Chapman,
     22-Oct-2007.)  (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
        | 
|   | 
| Theorem | cosf 11870 | 
Domain and codomain of the cosine function.  (Contributed by Paul Chapman,
     22-Oct-2007.)  (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
        | 
|   | 
| Theorem | sincl 11871 | 
Closure of the sine function.  (Contributed by NM, 28-Apr-2005.)  (Revised
     by Mario Carneiro, 30-Apr-2014.)
 | 
                  
    | 
|   | 
| Theorem | coscl 11872 | 
Closure of the cosine function with a complex argument.  (Contributed by
     NM, 28-Apr-2005.)  (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
                  
    | 
|   | 
| Theorem | tanvalap 11873 | 
Value of the tangent function.  (Contributed by Mario Carneiro,
       14-Mar-2014.)  (Revised by Jim Kingdon, 21-Dec-2022.)
 | 
                  #                               | 
|   | 
| Theorem | tanclap 11874 | 
The closure of the tangent function with a complex argument.  (Contributed
     by David A. Wheeler, 15-Mar-2014.)  (Revised by Jim Kingdon,
     21-Dec-2022.)
 | 
                  #                 | 
|   | 
| Theorem | sincld 11875 | 
Closure of the sine function.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | coscld 11876 | 
Closure of the cosine function.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | tanclapd 11877 | 
Closure of the tangent function.  (Contributed by Mario Carneiro,
       29-May-2016.)  (Revised by Jim Kingdon, 22-Dec-2022.)
 | 
                                 #                            | 
|   | 
| Theorem | tanval2ap 11878 | 
Express the tangent function directly in terms of  .  (Contributed
     by Mario Carneiro, 25-Feb-2015.)  (Revised by Jim Kingdon,
     22-Dec-2022.)
 | 
                  #                           
                                                        | 
|   | 
| Theorem | tanval3ap 11879 | 
Express the tangent function directly in terms of  .  (Contributed
     by Mario Carneiro, 25-Feb-2015.)  (Revised by Jim Kingdon,
     22-Dec-2022.)
 | 
                                    #                                                                         | 
|   | 
| Theorem | resinval 11880 | 
The sine of a real number in terms of the exponential function.
     (Contributed by NM, 30-Apr-2005.)
 | 
                  
                  | 
|   | 
| Theorem | recosval 11881 | 
The cosine of a real number in terms of the exponential function.
     (Contributed by NM, 30-Apr-2005.)
 | 
                  
                  | 
|   | 
| Theorem | efi4p 11882* | 
Separate out the first four terms of the infinite series expansion of
       the exponential function.  (Contributed by Paul Chapman, 19-Jan-2008.)
       (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
            
                                                                                      
           
                           | 
|   | 
| Theorem | resin4p 11883* | 
Separate out the first four terms of the infinite series expansion of
       the sine of a real number.  (Contributed by Paul Chapman, 19-Jan-2008.)
       (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
            
                                                  
                                            | 
|   | 
| Theorem | recos4p 11884* | 
Separate out the first four terms of the infinite series expansion of
       the cosine of a real number.  (Contributed by Paul Chapman,
       19-Jan-2008.)  (Revised by Mario Carneiro, 30-Apr-2014.)
 | 
            
                                                  
                                            | 
|   | 
| Theorem | resincl 11885 | 
The sine of a real number is real.  (Contributed by NM, 30-Apr-2005.)
 | 
                  
    | 
|   | 
| Theorem | recoscl 11886 | 
The cosine of a real number is real.  (Contributed by NM, 30-Apr-2005.)
 | 
                  
    | 
|   | 
| Theorem | retanclap 11887 | 
The closure of the tangent function with a real argument.  (Contributed by
     David A. Wheeler, 15-Mar-2014.)
 | 
                  #                 | 
|   | 
| Theorem | resincld 11888 | 
Closure of the sine function.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | recoscld 11889 | 
Closure of the cosine function.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                      | 
|   | 
| Theorem | retanclapd 11890 | 
Closure of the tangent function.  (Contributed by Mario Carneiro,
       29-May-2016.)
 | 
                                 #                            | 
|   | 
| Theorem | sinneg 11891 | 
The sine of a negative is the negative of the sine.  (Contributed by NM,
     30-Apr-2005.)
 | 
                   
         | 
|   | 
| Theorem | cosneg 11892 | 
The cosines of a number and its negative are the same.  (Contributed by
     NM, 30-Apr-2005.)
 | 
                   
        | 
|   | 
| Theorem | tannegap 11893 | 
The tangent of a negative is the negative of the tangent.  (Contributed by
     David A. Wheeler, 23-Mar-2014.)
 | 
                  #                       | 
|   | 
| Theorem | sin0 11894 | 
Value of the sine function at 0.  (Contributed by Steve Rodriguez,
     14-Mar-2005.)
 | 
            | 
|   | 
| Theorem | cos0 11895 | 
Value of the cosine function at 0.  (Contributed by NM, 30-Apr-2005.)
 | 
            | 
|   | 
| Theorem | tan0 11896 | 
The value of the tangent function at zero is zero.  (Contributed by David
     A. Wheeler, 16-Mar-2014.)
 | 
            | 
|   | 
| Theorem | efival 11897 | 
The exponential function in terms of sine and cosine.  (Contributed by NM,
     30-Apr-2005.)
 | 
                                                | 
|   | 
| Theorem | efmival 11898 | 
The exponential function in terms of sine and cosine.  (Contributed by NM,
     14-Jan-2006.)
 | 
                                                 | 
|   | 
| Theorem | efeul 11899 | 
Eulerian representation of the complex exponential.  (Suggested by Jeff
     Hankins, 3-Jul-2006.)  (Contributed by NM, 4-Jul-2006.)
 | 
                  
                                              | 
|   | 
| Theorem | efieq 11900 | 
The exponentials of two imaginary numbers are equal iff their sine and
     cosine components are equal.  (Contributed by Paul Chapman,
     15-Mar-2008.)
 | 
                                 
                                         
          |