HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 161)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.9.4  Infinite sums (cont.)
 
Theoremisumshft 11801* Index shift of an infinite sum. (Contributed by Paul Chapman, 31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  ( M  +  K ) )   &    |-  (
 j  =  ( K  +  k )  ->  A  =  B )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  W ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  W  A  =  sum_ k  e.  Z  B )
 
Theoremisumsplit 11802* Split off the first  N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (
 sum_ k  e.  ( M ... ( N  -  1 ) ) A  +  sum_ k  e.  W  A ) )
 
Theoremisum1p 11803* The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  ( ( F `  M )  +  sum_ k  e.  ( ZZ>= `  ( M  +  1 ) ) A ) )
 
Theoremisumnn0nn 11804* Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( k  =  0 
 ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  A  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e. 
 NN0  A  =  ( B  +  sum_ k  e. 
 NN  A ) )
 
Theoremisumrpcl 11805* The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR+ )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  W  A  e.  RR+ )
 
Theoremisumle 11806* Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  A  <_  B )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
 
Theoremisumlessdc 11807* A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  B )   &    |-  ( ph  ->  A. k  e.  Z DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  0  <_  B )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  Z  B )
 
4.9.5  Miscellaneous converging and diverging sequences
 
Theoremdivcnv 11808* The sequence of reciprocals of positive integers, multiplied by the factor  A, converges to zero. (Contributed by NM, 6-Feb-2008.) (Revised by Jim Kingdon, 22-Oct-2022.)
 |-  ( A  e.  CC  ->  ( n  e.  NN  |->  ( A  /  n ) )  ~~>  0 )
 
4.9.6  Arithmetic series
 
Theoremarisum 11809* Arithmetic series sum of the first 
N positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 1
 ... N ) k  =  ( ( ( N ^ 2 )  +  N )  / 
 2 ) )
 
Theoremarisum2 11810* Arithmetic series sum of the first 
N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0
 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  / 
 2 ) )
 
Theoremtrireciplem 11811 Lemma for trirecip 11812. Show that the sum converges. (Contributed by Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  F  =  ( n  e.  NN  |->  ( 1 
 /  ( n  x.  ( n  +  1
 ) ) ) )   =>    |-  seq 1 (  +  ,  F )  ~~>  1
 
Theoremtrirecip 11812 The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |- 
 sum_ k  e.  NN  ( 2  /  (
 k  x.  ( k  +  1 ) ) )  =  2
 
4.9.7  Geometric series
 
Theoremexpcnvap0 11813* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnvre 11814* A sequence of powers of a nonnegative real number less than one converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexpcnv 11815* A sequence of powers of a complex number  A with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   =>    |-  ( ph  ->  ( n  e.  NN0  |->  ( A ^ n ) )  ~~>  0 )
 
Theoremexplecnv 11816* A sequence of terms converges to zero when it is less than powers of a number  A whose absolute value is smaller than 1. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  F  e.  V )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( abs `  ( F `  k ) )  <_  ( A ^ k ) )   =>    |-  ( ph  ->  F  ~~>  0 )
 
Theoremgeosergap 11817* The value of the finite geometric series  A ^ M  +  A ^ ( M  + 
1 )  +...  +  A ^
( N  -  1 ). (Contributed by Mario Carneiro, 2-May-2016.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ N ) ( A ^ k
 )  =  ( ( ( A ^ M )  -  ( A ^ N ) )  /  ( 1  -  A ) ) )
 
Theoremgeoserap 11818* The value of the finite geometric series  1  +  A ^
1  +  A ^
2  +...  +  A ^
( N  -  1 ). This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A #  1 )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 )  =  ( ( 1  -  ( A ^ N ) ) 
 /  ( 1  -  A ) ) )
 
Theorempwm1geoserap1 11819* The n-th power of a number decreased by 1 expressed by the finite geometric series  1  +  A ^ 1  +  A ^ 2  +...  +  A ^ ( N  - 
1 ). (Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon, 24-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  NN0 )   &    |-  ( ph  ->  A #  1 )   =>    |-  ( ph  ->  (
 ( A ^ N )  -  1 )  =  ( ( A  -  1 )  x.  sum_ k  e.  ( 0 ... ( N  -  1 ) ) ( A ^ k
 ) ) )
 
Theoremabsltap 11820 Less-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( abs `  A )  <  B )   =>    |-  ( ph  ->  A #  B )
 
Theoremabsgtap 11821 Greater-than of absolute value implies apartness. (Contributed by Jim Kingdon, 29-Oct-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  B  <  ( abs `  A ) )   =>    |-  ( ph  ->  A #  B )
 
Theoremgeolim 11822* The partial sums in the infinite series  1  +  A ^
1  +  A ^
2... converge to  ( 1  /  (
1  -  A ) ). (Contributed by NM, 15-May-2006.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( A ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeolim2 11823* The partial sums in the geometric series  A ^ M  +  A ^ ( M  + 
1 )... converge to  ( ( A ^ M )  / 
( 1  -  A
) ). (Contributed by NM, 6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <  1 )   &    |-  ( ph  ->  M  e.  NN0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  ->  ( F `  k )  =  ( A ^
 k ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  ( ( A ^ M )  /  ( 1  -  A ) ) )
 
Theoremgeoreclim 11824* The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  1  <  ( abs `  A ) )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( F `  k
 )  =  ( ( 1  /  A ) ^ k ) )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F ) 
 ~~>  ( A  /  ( A  -  1 ) ) )
 
Theoremgeo2sum 11825* The value of the finite geometric series  2 ^ -u 1  +  2 ^ -u 2  +...  +  2 ^
-u N, multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  CC )  ->  sum_ k  e.  (
 1 ... N ) ( A  /  ( 2 ^ k ) )  =  ( A  -  ( A  /  (
 2 ^ N ) ) ) )
 
Theoremgeo2sum2 11826* The value of the finite geometric series  1  +  2  + 
4  +  8  +...  +  2 ^ ( N  -  1 ). (Contributed by Mario Carneiro, 7-Sep-2016.)
 |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0..^ N ) ( 2 ^ k )  =  ( ( 2 ^ N )  -  1
 ) )
 
Theoremgeo2lim 11827* The value of the infinite geometric series  2 ^ -u 1  +  2 ^ -u 2  +... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014.)
 |-  F  =  ( k  e.  NN  |->  ( A 
 /  ( 2 ^
 k ) ) )   =>    |-  ( A  e.  CC  ->  seq 1 (  +  ,  F )  ~~>  A )
 
Theoremgeoisum 11828* The infinite sum of  1  +  A ^ 1  +  A ^ 2... is  ( 1  /  ( 1  -  A ) ). (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN0  ( A ^ k )  =  ( 1  /  (
 1  -  A ) ) )
 
Theoremgeoisumr 11829* The infinite sum of reciprocals  1  +  ( 1  /  A ) ^ 1  +  ( 1  /  A ) ^ 2... is  A  / 
( A  -  1 ). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  1  <  ( abs `  A ) ) 
 ->  sum_ k  e.  NN0  ( ( 1  /  A ) ^ k
 )  =  ( A 
 /  ( A  -  1 ) ) )
 
Theoremgeoisum1 11830* The infinite sum of  A ^ 1  +  A ^ 2... is  ( A  /  ( 1  -  A ) ). (Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  ( abs `  A )  <  1 )  ->  sum_ k  e.  NN  ( A ^ k )  =  ( A  /  (
 1  -  A ) ) )
 
Theoremgeoisum1c 11831* The infinite sum of  A  x.  ( R ^ 1 )  +  A  x.  ( R ^ 2 )... is  ( A  x.  R )  /  (
1  -  R ). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
 |-  ( ( A  e.  CC  /\  R  e.  CC  /\  ( abs `  R )  <  1 )  ->  sum_ k  e.  NN  ( A  x.  ( R ^
 k ) )  =  ( ( A  x.  R )  /  (
 1  -  R ) ) )
 
Theorem0.999... 11832 The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e.  9  /  1 0 ^ 1  +  9  /  1 0 ^ 2  +  9  / 
1 0 ^ 3  +  ..., is exactly equal to 1. (Contributed by NM, 2-Nov-2007.) (Revised by AV, 8-Sep-2021.)
 |- 
 sum_ k  e.  NN  ( 9  /  (; 1 0 ^ k ) )  =  1
 
Theoremgeoihalfsum 11833 Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 11830. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 11832 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
 |- 
 sum_ k  e.  NN  ( 1  /  (
 2 ^ k ) )  =  1
 
4.9.8  Ratio test for infinite series convergence
 
Theoremcvgratnnlembern 11834 Lemma for cvgratnn 11842. Upper bound for a geometric progression of positive ratio less than one. (Contributed by Jim Kingdon, 24-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( A ^ M )  < 
 ( ( 1  /  ( ( 1  /  A )  -  1
 ) )  /  M ) )
 
Theoremcvgratnnlemnexp 11835* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  1 ) )  x.  ( A ^
 ( N  -  1
 ) ) ) )
 
Theoremcvgratnnlemmn 11836* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 15-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( F `  N ) )  <_  ( ( abs `  ( F `  M ) )  x.  ( A ^ ( N  -  M ) ) ) )
 
Theoremcvgratnnlemseq 11837* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( (  seq 1 (  +  ,  F ) `  N )  -  (  seq 1
 (  +  ,  F ) `  M ) )  =  sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )
 
Theoremcvgratnnlemabsle 11838* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs ` 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( F `  i
 ) )  <_  (
 ( abs `  ( F `  M ) )  x. 
 sum_ i  e.  (
 ( M  +  1 ) ... N ) ( A ^ (
 i  -  M ) ) ) )
 
Theoremcvgratnnlemsumlt 11839* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^
 ( i  -  M ) )  <  ( A 
 /  ( 1  -  A ) ) )
 
Theoremcvgratnnlemfm 11840* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 23-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   =>    |-  ( ph  ->  ( abs `  ( F `  M ) )  < 
 ( ( ( ( 1  /  ( ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) ) 
 /  M ) )
 
Theoremcvgratnnlemrate 11841* Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 21-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  e.  ( ZZ>=
 `  M ) )   =>    |-  ( ph  ->  ( abs `  ( (  seq 1
 (  +  ,  F ) `  N )  -  (  seq 1 (  +  ,  F ) `  M ) ) )  < 
 ( ( ( ( ( 1  /  (
 ( 1  /  A )  -  1 ) ) 
 /  A )  x.  ( ( abs `  ( F `  1 ) )  +  1 ) )  x.  ( A  /  ( 1  -  A ) ) )  /  M ) )
 
Theoremcvgratnn 11842* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. Although this theorem is similar to cvgratz 11843 and cvgratgt0 11844, the decision to index starting at one is not merely cosmetic, as proving convergence using climcvg1n 11661 is sensitive to how a sequence is indexed. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq 1
 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratz 11843* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms, then the infinite sum of the terms of  F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremcvgratgt0 11844* Ratio test for convergence of a complex infinite series. If the ratio  A of the absolute values of successive terms in an infinite sequence  F is less than 1 for all terms beyond some index  B, then the infinite sum of the terms of 
F converges to a complex number. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  W  =  (
 ZZ>= `  N )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  A  <  1 )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ( ph  /\  k  e.  W ) 
 ->  ( abs `  ( F `  ( k  +  1 ) ) ) 
 <_  ( A  x.  ( abs `  ( F `  k ) ) ) )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
4.9.9  Mertens' theorem
 
Theoremmertenslemub 11845* Lemma for mertensabs 11848. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
 |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ph  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( S  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ph  ->  X  e.  T )   &    |-  ( ph  ->  S  e.  NN )   =>    |-  ( ph  ->  X  <_ 
 sum_ n  e.  (
 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) )
 
Theoremmertenslemi1 11846* Lemma for mertensabs 11848. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   &    |-  ( ph  ->  P  e.  RR )   &    |-  ( ph  ->  ( ps  /\  ( t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t )
 ( K `  m )  <  ( ( ( E  /  2 ) 
 /  s )  /  ( P  +  1
 ) ) ) ) )   &    |-  ( ph  ->  0 
 <_  P )   &    |-  ( ph  ->  A. w  e.  T  w  <_  P )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertenslem2 11847* Lemma for mertensabs 11848. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  T  =  { z  |  E. n  e.  (
 0 ... ( s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) ) }   &    |-  ( ps 
 <->  ( s  e.  NN  /\ 
 A. n  e.  ( ZZ>=
 `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
 ) )  <  (
 ( E  /  2
 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )   =>    |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>=
 `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_
 k  e.  ( ZZ>= `  ( ( m  -  j )  +  1
 ) ) B ) )  <  E )
 
Theoremmertensabs 11848* Mertens' theorem. If  A ( j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  ( ( ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )   &    |-  ( ( ph  /\  j  e.  NN0 )  ->  ( K `  j
 )  =  ( abs `  A ) )   &    |-  (
 ( ph  /\  j  e. 
 NN0 )  ->  A  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( G `  k
 )  =  B )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  NN0 )  ->  ( H `  k
 )  =  sum_ j  e.  ( 0 ... k
 ) ( A  x.  ( G `  ( k  -  j ) ) ) )   &    |-  ( ph  ->  seq 0 (  +  ,  K )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0
 (  +  ,  G )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq 0
 (  +  ,  H ) 
 ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B ) )
 
4.9.10  Finite and infinite products
 
4.9.10.1  Product sequences
 
Theoremprodf 11849* An infinite product of complex terms is a function from an upper set of integers to  CC. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F ) : Z --> CC )
 
Theoremclim2prod 11850* The limit of an infinite product with an initial segment added. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq ( N  +  1 ) (  x.  ,  F )  ~~>  A )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  ( (  seq M (  x.  ,  F ) `  N )  x.  A ) )
 
Theoremclim2divap 11851* The limit of an infinite product with an initial segment removed. (Contributed by Scott Fenton, 20-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   &    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  A )   &    |-  ( ph  ->  (  seq M (  x.  ,  F ) `
  N ) #  0 )   =>    |-  ( ph  ->  seq ( N  +  1 )
 (  x.  ,  F ) 
 ~~>  ( A  /  (  seq M (  x.  ,  F ) `  N ) ) )
 
Theoremprod3fmul 11852* The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  x.  ( G `
  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `  N )  x.  (  seq M (  x.  ,  G ) `
  N ) ) )
 
Theoremprodf1 11853 The value of the partial products in a one-valued infinite product. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( N  e.  Z  ->  (  seq M (  x.  ,  ( Z  X.  { 1 } ) ) `  N )  =  1 )
 
Theoremprodf1f 11854 A one-valued infinite product is equal to the constant one function. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  =  ( Z  X.  { 1 } ) )
 
Theoremprodfclim1 11855 The constant one product converges to one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  seq M (  x. 
 ,  ( Z  X.  { 1 } ) )  ~~>  1 )
 
Theoremprodfap0 11856* The product of finitely many terms apart from zero is apart from zero. (Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon, 23-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F ) `  N ) #  0 )
 
Theoremprodfrecap 11857* The reciprocal of a finite product. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  ( F `
  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  ( G `  k
 )  =  ( 1 
 /  ( F `  k ) ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   =>    |-  ( ph  ->  (  seq M (  x.  ,  G ) `  N )  =  ( 1  /  (  seq M (  x.  ,  F ) `
  N ) ) )
 
Theoremprodfdivap 11858* The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k )  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( G `  k ) #  0 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( H `  k )  =  ( ( F `  k
 )  /  ( G `  k ) ) )   =>    |-  ( ph  ->  (  seq M (  x.  ,  H ) `  N )  =  ( (  seq M (  x.  ,  F ) `
  N )  /  (  seq M (  x. 
 ,  G ) `  N ) ) )
 
4.9.10.2  Non-trivial convergence
 
Theoremntrivcvgap 11859* A non-trivially converging infinite product converges. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  e. 
 CC )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  e.  dom  ~~>  )
 
Theoremntrivcvgap0 11860* A product that converges to a value apart from zero converges non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  X #  0 )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )
 
4.9.10.3  Complex products
 
Syntaxcprod 11861 Extend class notation to include complex products.
 class  prod_ k  e.  A  B
 
Definitiondf-proddc 11862* Define the product of a series with an index set of integers  A. This definition takes most of the aspects of df-sumdc 11665 and adapts them for multiplication instead of addition. However, we insist that in the infinite case, there is a nonzero tail of the sequence. This ensures that the convergence criteria match those of infinite sums. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 21-Mar-2024.)
 |- 
 prod_ k  e.  A  B  =  ( iota x ( E. m  e. 
 ZZ  ( ( A 
 C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e. 
 ZZ  |->  if ( k  e.  A ,  B , 
 1 ) ) )  ~~>  y )  /\  seq m (  x.  ,  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 ) )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  1 ) ) ) `  m ) ) ) )
 
Theoremprodeq1f 11863 Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ k A   &    |-  F/_ k B   =>    |-  ( A  =  B  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq1 11864* Equality theorem for a product. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  ( A  =  B  -> 
 prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremnfcprod1 11865* Bound-variable hypothesis builder for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k A   =>    |-  F/_ k prod_ k  e.  A  B
 
Theoremnfcprod 11866* Bound-variable hypothesis builder for product: if  x is (effectively) not free in  A and  B, it is not free in  prod_ k  e.  A B. (Contributed by Scott Fenton, 1-Dec-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x prod_ k  e.  A  B
 
Theoremprodeq2w 11867* Equality theorem for product, when the class expressions  B and  C are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  B  =  C  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2 11868* Equality theorem for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( A. k  e.  A  B  =  C  -> 
 prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremcbvprod 11869* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   &    |-  F/_ k A   &    |-  F/_ j A   &    |-  F/_ k B   &    |-  F/_ j C   =>    |- 
 prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodv 11870* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( j  =  k 
 ->  B  =  C )   =>    |-  prod_
 j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremcbvprodi 11871* Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F/_ k B   &    |-  F/_ j C   &    |-  (
 j  =  k  ->  B  =  C )   =>    |-  prod_ j  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq1i 11872* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  C
 
Theoremprodeq2i 11873* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( k  e.  A  ->  B  =  C )   =>    |-  prod_
 k  e.  A  B  =  prod_ k  e.  A  C
 
Theoremprodeq12i 11874* Equality inference for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  A  =  B   &    |-  (
 k  e.  A  ->  C  =  D )   =>    |-  prod_ k  e.  A  C  =  prod_ k  e.  B  D
 
Theoremprodeq1d 11875* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
 
Theoremprodeq2d 11876* Equality deduction for product. Note that unlike prodeq2dv 11877, 
k may occur in  ph. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A. k  e.  A  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2dv 11877* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  k  e.  A )  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theoremprodeq2sdv 11878* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ k  e.  A  C )
 
Theorem2cprodeq2dv 11879* Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ( ph  /\  j  e.  A  /\  k  e.  B )  ->  C  =  D )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ j  e.  A  prod_ k  e.  B  D )
 
Theoremprodeq12dv 11880* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodeq12rdv 11881* Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  C  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  D )
 
Theoremprodrbdclem 11882* Lemma for prodrbdc 11885. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 4-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  x.  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  x.  ,  F ) )
 
Theoremfproddccvg 11883* The sequence of partial products of a finite product converges to the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  (  seq M (  x. 
 ,  F ) `  N ) )
 
Theoremprodrbdclem2 11884* Lemma for prodrbdc 11885. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ( ph  /\  N  e.  ( ZZ>= `  M )
 )  ->  (  seq M (  x.  ,  F ) 
 ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodrbdc 11885* Rebase the starting point of a product. (Contributed by Scott Fenton, 4-Dec-2017.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  x.  ,  F )  ~~>  C  <->  seq N (  x. 
 ,  F )  ~~>  C )
 )
 
Theoremprodmodclem3 11886* Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  (  seq 1 (  x.  ,  G ) `  M )  =  (  seq 1 (  x.  ,  H ) `  N ) )
 
Theoremprodmodclem2a 11887* Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 11-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   &    |-  H  =  ( j  e.  NN  |->  if (
 j  <_  ( `  A ) ,  [_ ( K `
  j )  /  k ]_ B ,  1 ) )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  x.  ,  F )  ~~>  (  seq 1
 (  x.  ,  G ) `  N ) )
 
Theoremprodmodclem2 11888* Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon, 13-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  (
 ( A  C_  ( ZZ>=
 `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A ) 
 /\  ( E. n  e.  ( ZZ>= `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  z  =  ( 
 seq 1 (  x. 
 ,  G ) `  m ) )  ->  x  =  z )
 )
 
Theoremprodmodc 11889* A product has at most one limit. (Contributed by Scott Fenton, 4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( j  e.  NN  |->  if ( j  <_  ( `  A ) ,  [_ ( f `  j
 )  /  k ]_ B ,  1 )
 )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>=
 `  m )DECID  j  e.  A )  /\  ( E. n  e.  ( ZZ>=
 `  m ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )  /\  seq m (  x. 
 ,  F )  ~~>  x )
 )  \/  E. m  e.  NN  E. f ( f : ( 1
 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  x.  ,  G ) `  m ) ) ) )
 
Theoremzproddc 11890* Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  1 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  (  ~~>  ` 
 seq M (  x. 
 ,  F ) ) )
 
Theoremiprodap 11891* Series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 5-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0 
 /\  seq n (  x. 
 ,  F )  ~~>  y )
 )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
 
Theoremzprodap0 11892* Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )   &    |-  ( ph  ->  A 
 C_  Z )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 1 ) )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  X )
 
Theoremiprodap0 11893* Nonzero series product with an upper integer index set (i.e. an infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  X #  0 )   &    |-  ( ph  ->  seq M (  x. 
 ,  F )  ~~>  X )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  Z  B  =  X )
 
4.9.10.4  Finite products
 
Theoremfprodseq 11894* The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( 
 seq 1 (  x. 
 ,  ( n  e. 
 NN  |->  if ( n  <_  M ,  ( G `  n ) ,  1 ) ) ) `  M ) )
 
Theoremfprodntrivap 11895* A non-triviality lemma for finite sequences. (Contributed by Scott Fenton, 16-Dec-2017.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  N  e.  Z )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  E. n  e.  Z  E. y ( y #  0  /\  seq n (  x.  ,  (
 k  e.  Z  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )
 )
 
Theoremprod0 11896 A product over the empty set is one. (Contributed by Scott Fenton, 5-Dec-2017.)
 |- 
 prod_ k  e.  (/)  A  =  1
 
Theoremprod1dc 11897* Any product of one over a valid set is one. (Contributed by Scott Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  prod_ k  e.  A  1  =  1 )
 
Theoremprodfct 11898* A lemma to facilitate conversions from the function form to the class-variable form of a product. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( A. k  e.  A  B  e.  CC  -> 
 prod_ j  e.  A  ( ( k  e.  A  |->  B ) `  j )  =  prod_ k  e.  A  B )
 
Theoremfprodf1o 11899* Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  prod_ n  e.  C  D )
 
Theoremprodssdc 11900* Change the index set to a subset in an upper integer product. (Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon, 6-Aug-2024.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  ( ph  ->  E. n  e.  ( ZZ>=
 `  M ) E. y ( y #  0 
 /\  seq n (  x. 
 ,  ( k  e.  ( ZZ>= `  M )  |->  if ( k  e.  B ,  C , 
 1 ) ) )  ~~>  y ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  1 )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  prod_ k  e.  A  C  =  prod_ k  e.  B  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16023
  Copyright terms: Public domain < Previous  Next >