HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfprodrev 11801* Reversal of a finite product. (Contributed by Scott Fenton, 5-Jan-2018.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  prod_ j  e.  ( M ... N ) A  =  prod_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfprodconst 11802* The product of constant terms ( k is not free in  B). (Contributed by Scott Fenton, 12-Jan-2018.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 prod_ k  e.  A  B  =  ( B ^ ( `  A )
 ) )
 
Theoremfprodap0 11803* A finite product of nonzero terms is nonzero. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  B #  0 )
 
Theoremfprod2dlemstep 11804* Lemma for fprod2d 11805- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 prod_ j  e.  x  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  prod_ j  e.  ( x  u.  { y }
 ) prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfprod2d 11805* Write a double product as a product over a two-dimensional region. Compare fsum2d 11617. (Contributed by Scott Fenton, 30-Jan-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfprodxp 11806* Combine two products into a single product over the cartesian product. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ z  e.  ( A  X.  B ) D )
 
Theoremfprodcnv 11807* Transform a product region using the converse operation. (Contributed by Scott Fenton, 1-Feb-2018.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ x  e.  A  B  =  prod_ y  e.  `'  A C )
 
Theoremfprodcom2fi 11808* Interchange order of multiplication. Note that  B ( j ) and  D ( k ) are not necessarily constant expressions. (Contributed by Scott Fenton, 1-Feb-2018.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  E  =  prod_ k  e.  C  prod_ j  e.  D  E )
 
Theoremfprodcom 11809* Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ j  e.  A  prod_ k  e.  B  C  =  prod_ k  e.  B  prod_ j  e.  A  C )
 
Theoremfprod0diagfz 11810* Two ways to express "the product of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N. Compare fisum0diag 11623. (Contributed by Scott Fenton, 2-Feb-2018.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  prod_ j  e.  ( 0 ... N ) prod_ k  e.  (
 0 ... ( N  -  j ) ) A  =  prod_ k  e.  (
 0 ... N ) prod_
 j  e.  ( 0
 ... ( N  -  k ) ) A )
 
Theoremfprodrec 11811* The finite product of reciprocals is the reciprocal of the product. (Contributed by Jim Kingdon, 28-Aug-2024.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( 1  /  B )  =  (
 1  /  prod_ k  e.  A  B ) )
 
Theoremfproddivap 11812* The quotient of two finite products. (Contributed by Scott Fenton, 15-Jan-2018.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  /  prod_ k  e.  A  C ) )
 
Theoremfproddivapf 11813* The quotient of two finite products. A version of fproddivap 11812 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C #  0 )   =>    |-  ( ph  ->  prod_ k  e.  A  ( B  /  C )  =  ( prod_ k  e.  A  B  / 
 prod_ k  e.  A  C ) )
 
Theoremfprodsplitf 11814* Split a finite product into two parts. A version of fprodsplit 11779 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  U  C  =  (
 prod_ k  e.  A  C  x.  prod_ k  e.  B  C ) )
 
Theoremfprodsplitsn 11815* Separate out a term in a finite product. See also fprodunsn 11786 which is the same but with a distinct variable condition in place of  F/ k ph. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  prod_
 k  e.  ( A  u.  { B }
 ) C  =  (
 prod_ k  e.  A  C  x.  D ) )
 
Theoremfprodsplit1f 11816* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  F/_ k D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  D )   =>    |-  ( ph  ->  prod_ k  e.  A  B  =  ( D  x.  prod_ k  e.  ( A  \  { C } ) B ) )
 
Theoremfprodclf 11817* Closure of a finite product of complex numbers. A version of fprodcl 11789 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  prod_ k  e.  A  B  e.  CC )
 
Theoremfprodap0f 11818* A finite product of terms apart from zero is apart from zero. A version of fprodap0 11803 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by Jim Kingdon, 30-Aug-2024.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B #  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B #  0 )
 
Theoremfprodge0 11819* If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   =>    |-  ( ph  ->  0  <_  prod_
 k  e.  A  B )
 
Theoremfprodeq0g 11820* Any finite product containing a zero term is itself zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  k  =  C )  ->  B  =  0 )   =>    |-  ( ph  ->  prod_
 k  e.  A  B  =  0 )
 
Theoremfprodge1 11821* If all of the terms of a finite product are greater than or equal to  1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  1  <_  B )   =>    |-  ( ph  ->  1  <_  prod_
 k  e.  A  B )
 
Theoremfprodle 11822* If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  0  <_  B )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  prod_ k  e.  A  B  <_  prod_ k  e.  A  C )
 
Theoremfprodmodd 11823* If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  ZZ )   &    |-  ( ph  ->  M  e.  NN )   &    |-  (
 ( ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M ) )   =>    |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  (
 prod_ k  e.  A  C  mod  M ) )
 
4.10  Elementary trigonometry
 
4.10.1  The exponential, sine, and cosine functions
 
Syntaxce 11824 Extend class notation to include the exponential function.
 class  exp
 
Syntaxceu 11825 Extend class notation to include Euler's constant  _e = 2.71828....
 class  _e
 
Syntaxcsin 11826 Extend class notation to include the sine function.
 class  sin
 
Syntaxccos 11827 Extend class notation to include the cosine function.
 class  cos
 
Syntaxctan 11828 Extend class notation to include the tangent function.
 class  tan
 
Syntaxcpi 11829 Extend class notation to include the constant pi,  pi = 3.14159....
 class  pi
 
Definitiondf-ef 11830* Define the exponential function. Its value at the complex number  A is  ( exp `  A
) and is called the "exponential of  A"; see efval 11843. (Contributed by NM, 14-Mar-2005.)
 |- 
 exp  =  ( x  e.  CC  |->  sum_ k  e.  NN0  ( ( x ^
 k )  /  ( ! `  k ) ) )
 
Definitiondf-e 11831 Define Euler's constant  _e = 2.71828.... (Contributed by NM, 14-Mar-2005.)
 |-  _e  =  ( exp `  1 )
 
Definitiondf-sin 11832 Define the sine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 sin  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  -  ( exp `  ( -u _i  x.  x ) ) ) 
 /  ( 2  x.  _i ) ) )
 
Definitiondf-cos 11833 Define the cosine function. (Contributed by NM, 14-Mar-2005.)
 |- 
 cos  =  ( x  e.  CC  |->  ( ( ( exp `  ( _i  x.  x ) )  +  ( exp `  ( -u _i  x.  x ) ) ) 
 /  2 ) )
 
Definitiondf-tan 11834 Define the tangent function. We define it this way for cmpt 4095, which requires the form  ( x  e.  A  |->  B ). (Contributed by Mario Carneiro, 14-Mar-2014.)
 |- 
 tan  =  ( x  e.  ( `' cos " ( CC  \  { 0 } ) )  |->  ( ( sin `  x )  /  ( cos `  x ) ) )
 
Definitiondf-pi 11835 Define the constant pi,  pi = 3.14159..., which is the smallest positive number whose sine is zero. Definition of  pi in [Gleason] p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV, 14-Sep-2020.)
 |-  pi  = inf ( (
 RR+  i^i  ( `' sin " { 0 } )
 ) ,  RR ,  <  )
 
Theoremeftcl 11836 Closure of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 11-Sep-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  CC )
 
Theoremreeftcl 11837 The terms of the series expansion of the exponential function at a real number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
 |-  ( ( A  e.  RR  /\  K  e.  NN0 )  ->  ( ( A ^ K )  /  ( ! `  K ) )  e.  RR )
 
Theoremeftabs 11838 The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007.)
 |-  ( ( A  e.  CC  /\  K  e.  NN0 )  ->  ( abs `  (
 ( A ^ K )  /  ( ! `  K ) ) )  =  ( ( ( abs `  A ) ^ K )  /  ( ! `  K ) ) )
 
Theoremeftvalcn 11839* The value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  ( F `  N )  =  (
 ( A ^ N )  /  ( ! `  N ) ) )
 
Theoremefcllemp 11840* Lemma for efcl 11846. The series that defines the exponential function converges. The ratio test cvgratgt0 11715 is used to show convergence. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  ( 2  x.  ( abs `  A ) )  <  K )   =>    |-  ( ph  ->  seq 0
 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremefcllem 11841* Lemma for efcl 11846. The series that defines the exponential function converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon, 8-Dec-2022.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  e.  dom  ~~>  )
 
Theoremef0lem 11842* The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  =  0  ->  seq 0 (  +  ,  F )  ~~>  1 )
 
Theoremefval 11843* Value of the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( exp `  A )  =  sum_ k  e. 
 NN0  ( ( A ^ k )  /  ( ! `  k ) ) )
 
Theoremesum 11844 Value of Euler's constant  _e = 2.71828.... (Contributed by Steve Rodriguez, 5-Mar-2006.)
 |-  _e  =  sum_ k  e.  NN0  ( 1  /  ( ! `  k ) )
 
Theoremeff 11845 Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
 |- 
 exp : CC --> CC
 
Theoremefcl 11846 Closure law for the exponential function. (Contributed by NM, 8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( exp `  A )  e.  CC )
 
Theoremefval2 11847* Value of the exponential function. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  ( exp `  A )  =  sum_ k  e. 
 NN0  ( F `  k ) )
 
Theoremefcvg 11848* The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  seq 0 (  +  ,  F )  ~~>  ( exp `  A ) )
 
Theoremefcvgfsum 11849* Exponential function convergence in terms of a sequence of partial finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  sum_ k  e.  ( 0 ... n ) ( ( A ^ k )  /  ( ! `  k ) ) )   =>    |-  ( A  e.  CC  ->  F  ~~>  ( exp `  A ) )
 
Theoremreefcl 11850 The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR )
 
Theoremreefcld 11851 The exponential function is real if its argument is real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( exp `  A )  e. 
 RR )
 
Theoremere 11852 Euler's constant  _e = 2.71828... is a real number. (Contributed by NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
 |-  _e  e.  RR
 
Theoremege2le3 11853 Euler's constant  _e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
 |-  F  =  ( n  e.  NN  |->  ( 2  x.  ( ( 1 
 /  2 ) ^ n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( 1  /  ( ! `  n ) ) )   =>    |-  ( 2  <_  _e  /\  _e  <_  3 )
 
Theoremef0 11854 Value of the exponential function at 0. Equation 2 of [Gleason] p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( exp `  0
 )  =  1
 
Theoremefcj 11855 The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308. (Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
 |-  ( A  e.  CC  ->  ( exp `  ( * `  A ) )  =  ( * `  ( exp `  A )
 ) )
 
Theoremefaddlem 11856* Lemma for efadd 11857 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( ( B ^ n )  /  ( ! `  n ) ) )   &    |-  H  =  ( n  e.  NN0  |->  ( ( ( A  +  B ) ^ n )  /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( exp `  ( A  +  B ) )  =  ( ( exp `  A )  x.  ( exp `  B ) ) )
 
Theoremefadd 11857 Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  +  B )
 )  =  ( ( exp `  A )  x.  ( exp `  B ) ) )
 
Theoremefcan 11858 Cancellation law for exponential function. Equation 27 of [Rudin] p. 164. (Contributed by NM, 13-Jan-2006.)
 |-  ( A  e.  CC  ->  ( ( exp `  A )  x.  ( exp `  -u A ) )  =  1
 )
 
Theoremefap0 11859 The exponential of a complex number is apart from zero. (Contributed by Jim Kingdon, 12-Dec-2022.)
 |-  ( A  e.  CC  ->  ( exp `  A ) #  0 )
 
Theoremefne0 11860 The exponential of a complex number is nonzero. Corollary 15-4.3 of [Gleason] p. 309. The same result also holds with not equal replaced by apart, as seen at efap0 11859 (which will be more useful in most contexts). (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  ( A  e.  CC  ->  ( exp `  A )  =/=  0 )
 
Theoremefneg 11861 The exponential of the opposite is the inverse of the exponential. (Contributed by Mario Carneiro, 10-May-2014.)
 |-  ( A  e.  CC  ->  ( exp `  -u A )  =  ( 1  /  ( exp `  A ) ) )
 
Theoremeff2 11862 The exponential function maps the complex numbers to the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
 |- 
 exp : CC --> ( CC  \  { 0 } )
 
Theoremefsub 11863 Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( exp `  ( A  -  B ) )  =  ( ( exp `  A )  /  ( exp `  B ) ) )
 
Theoremefexp 11864 The exponential of an integer power. Corollary 15-4.4 of [Gleason] p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( exp `  ( N  x.  A ) )  =  ( ( exp `  A ) ^ N ) )
 
Theoremefzval 11865 Value of the exponential function for integers. Special case of efval 11843. Equation 30 of [Rudin] p. 164. (Contributed by Steve Rodriguez, 15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
 |-  ( N  e.  ZZ  ->  ( exp `  N )  =  ( _e ^ N ) )
 
Theoremefgt0 11866 The exponential of a real number is greater than 0. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR  ->  0  <  ( exp `  A ) )
 
Theoremrpefcl 11867 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  RR  ->  ( exp `  A )  e.  RR+ )
 
Theoremrpefcld 11868 The exponential of a real number is a positive real. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( exp `  A )  e.  RR+ )
 
Theoremeftlcvg 11869* The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremeftlcl 11870* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k )  e.  CC )
 
Theoremreeftlcl 11871* Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k )  e.  RR )
 
Theoremeftlub 11872* An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  G  =  ( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n )  /  ( ! `  n ) ) )   &    |-  H  =  ( n  e.  NN0  |->  ( ( ( ( abs `  A ) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( abs `  A )  <_ 
 1 )   =>    |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k ) )  <_  ( (
 ( abs `  A ) ^ M )  x.  (
 ( M  +  1 )  /  ( ( ! `  M )  x.  M ) ) ) )
 
Theoremefsep 11873* Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  N  =  ( M  +  1 )   &    |-  M  e.  NN0   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  ( exp `  A )  =  ( B  +  sum_ k  e.  ( ZZ>=
 `  M ) ( F `  k ) ) )   &    |-  ( ph  ->  ( B  +  ( ( A ^ M ) 
 /  ( ! `  M ) ) )  =  D )   =>    |-  ( ph  ->  ( exp `  A )  =  ( D  +  sum_ k  e.  ( ZZ>= `  N ) ( F `  k ) ) )
 
Theoremeffsumlt 11874* The partial sums of the series expansion of the exponential function at a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   &    |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  (  seq 0 (  +  ,  F ) `  N )  <  ( exp `  A ) )
 
Theoremeft0val 11875 The value of the first term of the series expansion of the exponential function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  ( A  e.  CC  ->  ( ( A ^
 0 )  /  ( ! `  0 ) )  =  1 )
 
Theoremef4p 11876* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( A ^ n ) 
 /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  ( exp `  A )  =  ( (
 ( ( 1  +  A )  +  (
 ( A ^ 2
 )  /  2 )
 )  +  ( ( A ^ 3 ) 
 /  6 ) )  +  sum_ k  e.  ( ZZ>=
 `  4 ) ( F `  k ) ) )
 
Theoremefgt1p2 11877 The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  RR+  ->  ( ( 1  +  A )  +  (
 ( A ^ 2
 )  /  2 )
 )  <  ( exp `  A ) )
 
Theoremefgt1p 11878 The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR+  ->  ( 1  +  A )  <  ( exp `  A ) )
 
Theoremefgt1 11879 The exponential of a positive real number is greater than 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  RR+  -> 
 1  <  ( exp `  A ) )
 
Theoremefltim 11880 The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 20-Dec-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B 
 ->  ( exp `  A )  <  ( exp `  B ) ) )
 
Theoremreef11 11881 The exponential function on real numbers is one-to-one. (Contributed by NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( exp `  A )  =  ( exp `  B )  <->  A  =  B ) )
 
Theoremreeff1 11882 The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( exp  |`  RR ) : RR -1-1-> RR+
 
Theoremeflegeo 11883 The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A  <  1 )   =>    |-  ( ph  ->  ( exp `  A )  <_  ( 1  /  (
 1  -  A ) ) )
 
Theoremsinval 11884 Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( sin `  A )  =  ( (
 ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) 
 /  ( 2  x.  _i ) ) )
 
Theoremcosval 11885 Value of the cosine function. (Contributed by NM, 14-Mar-2005.) (Revised by Mario Carneiro, 10-Nov-2013.)
 |-  ( A  e.  CC  ->  ( cos `  A )  =  ( (
 ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) 
 /  2 ) )
 
Theoremsinf 11886 Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |- 
 sin : CC --> CC
 
Theoremcosf 11887 Domain and codomain of the cosine function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |- 
 cos : CC --> CC
 
Theoremsincl 11888 Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  CC  ->  ( sin `  A )  e.  CC )
 
Theoremcoscl 11889 Closure of the cosine function with a complex argument. (Contributed by NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  ( A  e.  CC  ->  ( cos `  A )  e.  CC )
 
Theoremtanvalap 11890 Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( sin `  A )  /  ( cos `  A ) ) )
 
Theoremtanclap 11891 The closure of the tangent function with a complex argument. (Contributed by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  e. 
 CC )
 
Theoremsincld 11892 Closure of the sine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( sin `  A )  e. 
 CC )
 
Theoremcoscld 11893 Closure of the cosine function. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  ( cos `  A )  e. 
 CC )
 
Theoremtanclapd 11894 Closure of the tangent function. (Contributed by Mario Carneiro, 29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  ( cos `  A ) #  0 )   =>    |-  ( ph  ->  ( tan `  A )  e. 
 CC )
 
Theoremtanval2ap 11895 Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( cos `  A ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( _i  x.  A ) )  -  ( exp `  ( -u _i  x.  A ) ) ) 
 /  ( _i  x.  ( ( exp `  ( _i  x.  A ) )  +  ( exp `  ( -u _i  x.  A ) ) ) ) ) )
 
Theoremtanval3ap 11896 Express the tangent function directly in terms of  exp. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon, 22-Dec-2022.)
 |-  ( ( A  e.  CC  /\  ( ( exp `  ( 2  x.  ( _i  x.  A ) ) )  +  1 ) #  0 )  ->  ( tan `  A )  =  ( ( ( exp `  ( 2  x.  ( _i  x.  A ) ) )  -  1 ) 
 /  ( _i  x.  ( ( exp `  (
 2  x.  ( _i 
 x.  A ) ) )  +  1 ) ) ) )
 
Theoremresinval 11897 The sine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  RR  ->  ( sin `  A )  =  ( Im `  ( exp `  ( _i  x.  A ) ) ) )
 
Theoremrecosval 11898 The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005.)
 |-  ( A  e.  RR  ->  ( cos `  A )  =  ( Re `  ( exp `  ( _i  x.  A ) ) ) )
 
Theoremefi4p 11899* Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^ n )  /  ( ! `  n ) ) )   =>    |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 ) 
 /  2 ) )  +  ( _i  x.  ( A  -  (
 ( A ^ 3
 )  /  6 )
 ) ) )  +  sum_
 k  e.  ( ZZ>= `  4 ) ( F `
  k ) ) )
 
Theoremresin4p 11900* Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
 |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^ n )  /  ( ! `  n ) ) )   =>    |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^ 3 )  / 
 6 ) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
 ( F `  k
 ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >