HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 163)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfz1f1o 11801* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
 ( `  A )  e. 
 NN  /\  E. f  f : ( 1 ... ( `  A )
 )
 -1-1-onto-> A ) ) )
 
Theoremnnf1o 11802 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
 |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN ) )   &    |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )   &    |-  ( ph  ->  G : ( 1 ...
 N ) -1-1-onto-> A )   =>    |-  ( ph  ->  N  =  M )
 
Theoremsumrbdclem 11803* Lemma for sumrbdc 11805. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   =>    |-  ( ( ph  /\  A  C_  ( ZZ>= `  N )
 )  ->  (  seq M (  +  ,  F )  |`  ( ZZ>= `  N ) )  =  seq N (  +  ,  F ) )
 
Theoremfsum3cvg 11804* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A 
 C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremsumrbdc 11805* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  N )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  N )
 )  -> DECID  k  e.  A )   =>    |-  ( ph  ->  (  seq M (  +  ,  F )  ~~>  C  <->  seq N (  +  ,  F )  ~~>  C )
 )
 
Theoremsummodclem3 11806* Lemma for summodc 11809. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  ( M  e.  NN  /\  N  e.  NN )
 )   &    |-  ( ph  ->  f : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ph  ->  K : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  (  seq 1 (  +  ,  G ) `  M )  =  (  seq 1 (  +  ,  H ) `  N ) )
 
Theoremsummodclem2a 11807* Lemma for summodc 11809. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  H  =  ( n  e.  NN  |->  if ( n  <_  N ,  [_ ( K `
  n )  /  k ]_ B ,  0 ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  ( ZZ>= `  M )
 )   &    |-  ( ph  ->  f : ( 1 ...
 N ) -1-1-onto-> A )   &    |-  ( ph  ->  K 
 Isom  <  ,  <  (
 ( 1 ... ( `  A ) ) ,  A ) )   =>    |-  ( ph  ->  seq
 M (  +  ,  F )  ~~>  (  seq 1
 (  +  ,  G ) `  N ) )
 
Theoremsummodclem2 11808* Lemma for summodc 11809. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ( ph  /\  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x ) )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m )
 -1-1-onto-> A  /\  y  =  ( 
 seq 1 (  +  ,  G ) `  m ) )  ->  x  =  y ) )
 
Theoremsummodc 11809* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
 |-  F  =  ( k  e.  ZZ  |->  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )   &    |-  G  =  ( n  e.  NN  |->  if ( n  <_  ( `  A ) , 
 [_ ( f `  n )  /  k ]_ B ,  0 ) )   =>    |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  ,  F ) 
 ~~>  x )  \/  E. m  e.  NN  E. f
 ( f : ( 1 ... m ) -1-1-onto-> A 
 /\  x  =  ( 
 seq 1 (  +  ,  G ) `  m ) ) ) )
 
Theoremzsumdc 11810* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
 0 ) )   &    |-  ( ph  ->  A. x  e.  Z DECID  x  e.  A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremisum 11811* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  F ) ) )
 
Theoremfsumgcl 11812* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n )  e.  CC )
 
Theoremfsum3 11813* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
 |-  ( k  =  ( F `  n ) 
 ->  B  =  C )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  F : ( 1 ...
 M ) -1-1-onto-> A )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  n  e.  ( 1 ... M ) )  ->  ( G `
  n )  =  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 )
 ) ) `  M ) )
 
Theoremsum0 11814 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
 |- 
 sum_ k  e.  (/)  A  =  0
 
Theoremisumz 11815* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
 |-  ( ( ( M  e.  ZZ  /\  A  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>=
 `  M )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  =  0 )
 
Theoremfsumf1o 11816* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
 |-  ( k  =  G  ->  B  =  D )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  ( ph  ->  F : C -1-1-onto-> A )   &    |-  ( ( ph  /\  n  e.  C ) 
 ->  ( F `  n )  =  G )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  sum_ n  e.  C  D )
 
Theoremisumss 11817* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  A )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  B 
 C_  ( ZZ>= `  M ) )   &    |-  ( ph  ->  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )   =>    |-  ( ph  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremfisumss 11818* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( B  \  A ) )  ->  C  =  0 )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  B  e.  Fin )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  C )
 
Theoremisumss2 11819* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set  A and the added zeroes compose the rest of the containing set  B which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A. j  e.  B DECID  j  e.  A )   &    |-  ( ph  ->  A. k  e.  A  C  e.  CC )   &    |-  ( ph  ->  ( ( M  e.  ZZ  /\  B  C_  ( ZZ>= `  M )  /\  A. j  e.  ( ZZ>= `  M )DECID  j  e.  B )  \/  B  e.  Fin ) )   =>    |-  ( ph  ->  sum_
 k  e.  A  C  =  sum_ k  e.  B  if ( k  e.  A ,  C ,  0 ) )
 
Theoremfsum3cvg2 11820* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  seq M (  +  ,  F ) 
 ~~>  (  seq M (  +  ,  F ) `
  N ) )
 
Theoremfsumsersdc 11821* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( ZZ>= `  M )
 )  -> DECID  k  e.  A )   &    |-  ( ph  ->  A  C_  ( M ... N ) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  =  ( 
 seq M (  +  ,  F ) `  N ) )
 
Theoremfsum3cvg3 11822* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  C_  Z )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  ( F `  k
 )  =  if (
 k  e.  A ,  B ,  0 )
 )   &    |-  ( ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
 
Theoremfsum3ser 11823* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11838 and fsump1 11846, which should make our notation clear and from which, along with closure fsumcl 11826, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
 |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  ( F `  k )  =  A )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( ZZ>= `  M )
 )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  (  seq M (  +  ,  F ) `  N ) )
 
Theoremfsumcl2lem 11824* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  A  =/=  (/) )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  S )
 
Theoremfsumcllem 11825* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  S  C_ 
 CC )   &    |-  ( ( ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  ( x  +  y )  e.  S )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  S )   &    |-  ( ph  ->  0  e.  S )   =>    |-  ( ph  ->  sum_
 k  e.  A  B  e.  S )
 
Theoremfsumcl 11826* Closure of a finite sum of complex numbers  A ( k ). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  CC )
 
Theoremfsumrecl 11827* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR )
 
Theoremfsumzcl 11828* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  ZZ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumnn0cl 11829* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  NN0 )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  NN0 )
 
Theoremfsumrpcl 11830* Closure of a finite sum of positive reals. (Contributed by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR+ )   =>    |-  ( ph  ->  sum_ k  e.  A  B  e.  RR+ )
 
Theoremfsumzcl2 11831* A finite sum with integer summands is an integer. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
 |-  ( ( A  e.  Fin  /\  A. k  e.  A  B  e.  ZZ )  -> 
 sum_ k  e.  A  B  e.  ZZ )
 
Theoremfsumadd 11832* The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  +  C )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
 
Theoremfsumsplit 11833* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
 |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsumsplitf 11834* Split a sum into two parts. A version of fsumsplit 11833 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  U  =  ( A  u.  B ) )   &    |-  ( ph  ->  U  e.  Fin )   &    |-  ( ( ph  /\  k  e.  U )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  U  C  =  (
 sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremsumsnf 11835* A sum of a singleton is the term. A version of sumsn 11837 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  F/_ k B   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsumsplitsn 11836* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |- 
 F/ k ph   &    |-  F/_ k D   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  -.  B  e.  A )   &    |-  ( ( ph  /\  k  e.  A )  ->  C  e.  CC )   &    |-  ( k  =  B  ->  C  =  D )   &    |-  ( ph  ->  D  e.  CC )   =>    |-  ( ph  ->  sum_
 k  e.  ( A  u.  { B }
 ) C  =  (
 sum_ k  e.  A  C  +  D )
 )
 
Theoremsumsn 11837* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  V  /\  B  e.  CC )  ->  sum_ k  e.  { M } A  =  B )
 
Theoremfsum1 11838* The finite sum of  A ( k ) from  k  =  M to  M (i.e. a sum with only one term) is  B i.e.  A ( M ). (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ( M  e.  ZZ  /\  B  e.  CC )  ->  sum_ k  e.  ( M ... M ) A  =  B )
 
Theoremsumpr 11839* A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016.)
 |-  ( k  =  A  ->  C  =  D )   &    |-  ( k  =  B  ->  C  =  E )   &    |-  ( ph  ->  ( D  e.  CC  /\  E  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W )
 )   &    |-  ( ph  ->  A  =/=  B )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B } C  =  ( D  +  E )
 )
 
Theoremsumtp 11840* A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020.)
 |-  ( k  =  A  ->  D  =  E )   &    |-  ( k  =  B  ->  D  =  F )   &    |-  ( k  =  C  ->  D  =  G )   &    |-  ( ph  ->  ( E  e.  CC  /\  F  e.  CC  /\  G  e.  CC ) )   &    |-  ( ph  ->  ( A  e.  V  /\  B  e.  W  /\  C  e.  X )
 )   &    |-  ( ph  ->  A  =/=  B )   &    |-  ( ph  ->  A  =/=  C )   &    |-  ( ph  ->  B  =/=  C )   =>    |-  ( ph  ->  sum_ k  e.  { A ,  B ,  C } D  =  ( ( E  +  F )  +  G ) )
 
Theoremsumsns 11841* A sum of a singleton is the term. (Contributed by Mario Carneiro, 22-Apr-2014.)
 |-  ( ( M  e.  V  /\  [_ M  /  k ]_ A  e.  CC )  ->  sum_ k  e.  { M } A  =  [_ M  /  k ]_ A )
 
Theoremfsumm1 11842* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 26-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  ( M
 ... ( N  -  1 ) ) A  +  B ) )
 
Theoremfzosump1 11843* Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  N  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M..^ ( N  +  1 ) ) A  =  ( sum_ k  e.  ( M..^ N ) A  +  B ) )
 
Theoremfsum1p 11844* Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( k  =  M  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
 
Theoremfsumsplitsnun 11845* Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by AV, 17-Dec-2021.)
 |-  ( ( A  e.  Fin  /\  ( Z  e.  V  /\  Z  e/  A ) 
 /\  A. k  e.  ( A  u.  { Z }
 ) B  e.  ZZ )  ->  sum_ k  e.  ( A  u.  { Z }
 ) B  =  (
 sum_ k  e.  A  B  +  [_ Z  /  k ]_ B ) )
 
Theoremfsump1 11846* The addition of the next term in a finite sum of  A ( k ) is the current term plus  B i.e.  A ( N  +  1 ). (Contributed by NM, 4-Nov-2005.) (Revised by Mario Carneiro, 21-Apr-2014.)
 |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... ( N  +  1 )
 ) )  ->  A  e.  CC )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ k  e.  ( M ... ( N  +  1 )
 ) A  =  (
 sum_ k  e.  ( M ... N ) A  +  B ) )
 
Theoremisumclim 11847* An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  B )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  B )
 
Theoremisumclim2 11848* A converging series converges to its infinite sum. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_
 k  e.  Z  A )
 
Theoremisumclim3 11849* The sequence of partial finite sums of a converging infinite series converges to the infinite sum of the series. Note that  j must not occur in  A. (Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  F  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ( ph  /\  j  e.  Z ) 
 ->  ( F `  j
 )  =  sum_ k  e.  ( M ... j
 ) A )   =>    |-  ( ph  ->  F  ~~>  sum_
 k  e.  Z  A )
 
Theoremsumnul 11850* The sum of a non-convergent infinite series evaluates to the empty set. (Contributed by Paul Chapman, 4-Nov-2007.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  -.  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  =  (/) )
 
Theoremisumcl 11851* The sum of a converging infinite series is a complex number. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  CC )
 
Theoremisummulc2 11852* An infinite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( B  x.  sum_ k  e.  Z  A )  =  sum_ k  e.  Z  ( B  x.  A ) )
 
Theoremisummulc1 11853* An infinite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  x.  B )  =  sum_ k  e.  Z  ( A  x.  B ) )
 
Theoremisumdivapc 11854* An infinite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  B #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  Z  A  /  B )  =  sum_ k  e.  Z  ( A 
 /  B ) )
 
Theoremisumrecl 11855* The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  A  e.  RR )
 
Theoremisumge0 11856* An infinite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 28-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  RR )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ( ph  /\  k  e.  Z )  ->  0  <_  A )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  Z  A )
 
Theoremisumadd 11857* Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )   &    |-  ( ( ph  /\  k  e.  Z ) 
 ->  B  e.  CC )   &    |-  ( ph  ->  seq M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  Z  ( A  +  B )  =  ( sum_ k  e.  Z  A  +  sum_ k  e.  Z  B ) )
 
Theoremsumsplitdc 11858* Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  ( A  u.  B )  C_  Z )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  A )   &    |-  ( ( ph  /\  k  e.  Z )  -> DECID  k  e.  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  Z )  ->  ( G `  k )  =  if ( k  e.  B ,  C , 
 0 ) )   &    |-  (
 ( ph  /\  k  e.  ( A  u.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  seq
 M (  +  ,  F )  e.  dom  ~~>  )   &    |-  ( ph  ->  seq M (  +  ,  G )  e.  dom  ~~>  )   =>    |-  ( ph  ->  sum_ k  e.  ( A  u.  B ) C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
 
Theoremfsump1i 11859* Optimized version of fsump1 11846 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  Z  =  ( ZZ>= `  M )   &    |-  N  =  ( K  +  1 )   &    |-  ( k  =  N  ->  A  =  B )   &    |-  ( ( ph  /\  k  e.  Z )  ->  A  e.  CC )   &    |-  ( ph  ->  ( K  e.  Z  /\  sum_
 k  e.  ( M
 ... K ) A  =  S ) )   &    |-  ( ph  ->  ( S  +  B )  =  T )   =>    |-  ( ph  ->  ( N  e.  Z  /\  sum_
 k  e.  ( M
 ... N ) A  =  T ) )
 
Theoremfsum2dlemstep 11860* Lemma for fsum2d 11861- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.) (Revised by Jim Kingdon, 8-Oct-2022.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   &    |-  ( ph  ->  -.  y  e.  x )   &    |-  ( ph  ->  ( x  u.  { y } )  C_  A )   &    |-  ( ph  ->  x  e.  Fin )   &    |-  ( ps 
 <-> 
 sum_ j  e.  x  sum_
 k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )   =>    |-  ( ( ph  /\  ps )  ->  sum_ j  e.  ( x  u.  { y }
 ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  { y }
 ) ( { j }  X.  B ) D )
 
Theoremfsum2d 11861* Write a double sum as a sum over a two-dimensional region. Note that  B ( j ) is a function of  j. (Contributed by Mario Carneiro, 27-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  A  ( { j }  X.  B ) D )
 
Theoremfsumxp 11862* Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( z  =  <. j ,  k >.  ->  D  =  C )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  C  =  sum_ z  e.  ( A  X.  B ) D )
 
Theoremfsumcnv 11863* Transform a region of summation by using the converse operation. (Contributed by Mario Carneiro, 23-Apr-2014.)
 |-  ( x  =  <. j ,  k >.  ->  B  =  D )   &    |-  ( y  = 
 <. k ,  j >.  ->  C  =  D )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  Rel  A )   &    |-  ( ( ph  /\  x  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ x  e.  A  B  =  sum_ y  e.  `'  A C )
 
Theoremfisumcom2 11864* Interchange order of summation. Note that  B ( j ) and  D
( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) (Proof shortened by JJ, 2-Aug-2021.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  B  e.  Fin )   &    |-  ( ( ph  /\  k  e.  C ) 
 ->  D  e.  Fin )   &    |-  ( ph  ->  ( ( j  e.  A  /\  k  e.  B )  <->  ( k  e.  C  /\  j  e.  D ) ) )   &    |-  ( ( ph  /\  (
 j  e.  A  /\  k  e.  B )
 )  ->  E  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_ k  e.  B  E  =  sum_ k  e.  C  sum_ j  e.  D  E )
 
Theoremfsumcom 11865* Interchange order of summation. (Contributed by NM, 15-Nov-2005.) (Revised by Mario Carneiro, 23-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  C  =  sum_ k  e.  B  sum_
 j  e.  A  C )
 
Theoremfsum0diaglem 11866* Lemma for fisum0diag 11867. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( j  e.  ( 0 ... N )  /\  k  e.  (
 0 ... ( N  -  j ) ) ) 
 ->  ( k  e.  (
 0 ... N )  /\  j  e.  ( 0 ... ( N  -  k
 ) ) ) )
 
Theoremfisum0diag 11867* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  M  <_  j,  M  <_  k,  j  +  k  <_  N". (Contributed by NM, 31-Dec-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.)
 |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... ( N  -  k
 ) ) A )
 
Theoremmptfzshft 11868* 1-1 onto function in maps-to notation which shifts a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  (
 j  e.  ( ( M  +  K )
 ... ( N  +  K ) )  |->  ( j  -  K ) ) : ( ( M  +  K )
 ... ( N  +  K ) ) -1-1-onto-> ( M
 ... N ) )
 
Theoremfsumrev 11869* Reversal of a finite sum. (Contributed by NM, 26-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( K  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( K  -  N ) ... ( K  -  M ) ) B )
 
Theoremfsumshft 11870* Index shift of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.) (Proof shortened by AV, 8-Sep-2019.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  -  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  +  K ) ... ( N  +  K ) ) B )
 
Theoremfsumshftm 11871* Negative index shift of a finite sum. (Contributed by NM, 28-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( k  +  K )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( ( M  -  K ) ... ( N  -  K ) ) B )
 
Theoremfisumrev2 11872* Reversal of a finite sum. (Contributed by NM, 27-Nov-2005.) (Revised by Mario Carneiro, 13-Apr-2016.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  (
 ( ph  /\  j  e.  ( M ... N ) )  ->  A  e.  CC )   &    |-  ( j  =  ( ( M  +  N )  -  k
 )  ->  A  =  B )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) A  =  sum_ k  e.  ( M ... N ) B )
 
Theoremfisum0diag2 11873* Two ways to express "the sum of  A ( j ,  k ) over the triangular region  0  <_  j, 
0  <_  k,  j  +  k  <_  N". (Contributed by Mario Carneiro, 21-Jul-2014.)
 |-  ( x  =  k 
 ->  B  =  A )   &    |-  ( x  =  (
 k  -  j ) 
 ->  B  =  C )   &    |-  ( ( ph  /\  (
 j  e.  ( 0
 ... N )  /\  k  e.  ( 0 ... ( N  -  j
 ) ) ) ) 
 ->  A  e.  CC )   &    |-  ( ph  ->  N  e.  ZZ )   =>    |-  ( ph  ->  sum_ j  e.  ( 0 ... N ) sum_ k  e.  (
 0 ... ( N  -  j ) ) A  =  sum_ k  e.  (
 0 ... N ) sum_ j  e.  ( 0 ... k ) C )
 
Theoremfsummulc2 11874* A finite sum multiplied by a constant. (Contributed by NM, 12-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( C  x.  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( C  x.  B ) )
 
Theoremfsummulc1 11875* A finite sum multiplied by a constant. (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  x.  C )  =  sum_ k  e.  A  ( B  x.  C ) )
 
Theoremfsumdivapc 11876* A finite sum divided by a constant. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  C  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  B  e.  CC )   &    |-  ( ph  ->  C #  0 )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  /  C )  =  sum_ k  e.  A  ( B 
 /  C ) )
 
Theoremfsumneg 11877* Negation of a finite sum. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  -u B  =  -u sum_ k  e.  A  B )
 
Theoremfsumsub 11878* Split a finite sum over a subtraction. (Contributed by Scott Fenton, 12-Jun-2013.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  CC )   =>    |-  ( ph  ->  sum_ k  e.  A  ( B  -  C )  =  ( sum_ k  e.  A  B  -  sum_ k  e.  A  C ) )
 
Theoremfsum2mul 11879* Separate the nested sum of the product  C ( j )  x.  D ( k ). (Contributed by NM, 13-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  (
 ( ph  /\  j  e.  A )  ->  C  e.  CC )   &    |-  ( ( ph  /\  k  e.  B ) 
 ->  D  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  A  sum_
 k  e.  B  ( C  x.  D )  =  ( sum_ j  e.  A  C  x.  sum_ k  e.  B  D ) )
 
Theoremfsumconst 11880* The sum of constant terms ( k is not free in  B). (Contributed by NM, 24-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ( A  e.  Fin  /\  B  e.  CC )  -> 
 sum_ k  e.  A  B  =  ( ( `  A )  x.  B ) )
 
Theoremfsumdifsnconst 11881* The sum of constant terms ( k is not free in  C) over an index set excluding a singleton. (Contributed by AV, 7-Jan-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  A  /\  C  e.  CC )  -> 
 sum_ k  e.  ( A  \  { B }
 ) C  =  ( ( ( `  A )  -  1 )  x.  C ) )
 
Theoremmodfsummodlem1 11882* Lemma for modfsummod 11884. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( A. k  e.  ( A  u.  {
 z } ) B  e.  ZZ  ->  [_ z  /  k ]_ B  e.  ZZ )
 
Theoremmodfsummodlemstep 11883* Induction step for modfsummod 11884. (Contributed by Alexander van der Vekens, 1-Sep-2018.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A. k  e.  ( A  u.  { z }
 ) B  e.  ZZ )   &    |-  ( ph  ->  -.  z  e.  A )   &    |-  ( ph  ->  (
 sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N ) 
 mod  N ) )   =>    |-  ( ph  ->  (
 sum_ k  e.  ( A  u.  { z }
 ) B  mod  N )  =  ( sum_ k  e.  ( A  u.  { z } ) ( B  mod  N ) 
 mod  N ) )
 
Theoremmodfsummod 11884* A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
 |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B 
 mod  N )  mod  N ) )
 
Theoremfsumge0 11885* If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  0  <_ 
 sum_ k  e.  A  B )
 
Theoremfsumlessfi 11886* A shorter sum of nonnegative terms is no greater than a longer one. (Contributed by NM, 26-Dec-2005.) (Revised by Jim Kingdon, 12-Oct-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  C  e.  Fin )   =>    |-  ( ph  ->  sum_ k  e.  C  B  <_  sum_ k  e.  A  B )
 
Theoremfsumge1 11887* A sum of nonnegative numbers is greater than or equal to any one of its terms. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 4-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   &    |-  ( k  =  M  ->  B  =  C )   &    |-  ( ph  ->  M  e.  A )   =>    |-  ( ph  ->  C 
 <_  sum_ k  e.  A  B )
 
Theoremfsum00 11888* A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  0  <_  B )   =>    |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  =  0 )
 )
 
Theoremfsumle 11889* If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <_  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <_  sum_ k  e.  A  C )
 
Theoremfsumlt 11890* If every term in one finite sum is less than the corresponding term in another, then the first sum is less than the second. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Jun-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  A  =/=  (/) )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  RR )   &    |-  (
 ( ph  /\  k  e.  A )  ->  C  e.  RR )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  <  C )   =>    |-  ( ph  ->  sum_ k  e.  A  B  <  sum_ k  e.  A  C )
 
Theoremfsumabs 11891* Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B )
 )
 
Theoremtelfsumo 11892* Sum of a telescoping series, using half-open intervals. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsumo2 11893* Sum of a telescoping series. (Contributed by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  N  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M )
 )   &    |-  ( ( ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremtelfsum 11894* Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( B  -  C )  =  ( D  -  E ) )
 
Theoremtelfsum2 11895* Sum of a telescoping series. (Contributed by Mario Carneiro, 15-Jun-2014.) (Revised by Mario Carneiro, 2-May-2016.)
 |-  ( k  =  j 
 ->  A  =  B )   &    |-  ( k  =  (
 j  +  1 ) 
 ->  A  =  C )   &    |-  ( k  =  M  ->  A  =  D )   &    |-  ( k  =  ( N  +  1 )  ->  A  =  E )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... ( N  +  1 ) ) ) 
 ->  A  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M ... N ) ( C  -  B )  =  ( E  -  D ) )
 
Theoremfsumparts 11896* Summation by parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( k  =  j 
 ->  ( A  =  B  /\  V  =  W ) )   &    |-  ( k  =  ( j  +  1 )  ->  ( A  =  C  /\  V  =  X ) )   &    |-  (
 k  =  M  ->  ( A  =  D  /\  V  =  Y )
 )   &    |-  ( k  =  N  ->  ( A  =  E  /\  V  =  Z ) )   &    |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )   &    |-  ( ( ph  /\  k  e.  ( M
 ... N ) ) 
 ->  A  e.  CC )   &    |-  (
 ( ph  /\  k  e.  ( M ... N ) )  ->  V  e.  CC )   =>    |-  ( ph  ->  sum_ j  e.  ( M..^ N ) ( B  x.  ( X  -  W ) )  =  ( ( ( E  x.  Z )  -  ( D  x.  Y ) )  -  sum_
 j  e.  ( M..^ N ) ( ( C  -  B )  x.  X ) ) )
 
Theoremfsumrelem 11897* Lemma for fsumre 11898, fsumim 11899, and fsumcj 11900. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   &    |-  F : CC --> CC   &    |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )   =>    |-  ( ph  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `
  B ) )
 
Theoremfsumre 11898* The real part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Re `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Re `  B ) )
 
Theoremfsumim 11899* The imaginary part of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( Im `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( Im `  B ) )
 
Theoremfsumcj 11900* The complex conjugate of a sum. (Contributed by Paul Chapman, 9-Nov-2007.) (Revised by Mario Carneiro, 25-Jul-2014.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ( ph  /\  k  e.  A ) 
 ->  B  e.  CC )   =>    |-  ( ph  ->  ( * `  sum_
 k  e.  A  B )  =  sum_ k  e.  A  ( * `  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16225
  Copyright terms: Public domain < Previous  Next >