Theorem List for Intuitionistic Logic Explorer - 11801-11900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| 4.9.4 Infinite sums (cont.)
|
| |
| Theorem | isumshft 11801* |
Index shift of an infinite sum. (Contributed by Paul Chapman,
31-Oct-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
            
          
   |
| |
| Theorem | isumsplit 11802* |
Split off the first
terms of an infinite sum. (Contributed by
Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
|
                          
  
           |
| |
| Theorem | isum1p 11803* |
The infinite sum of a converging infinite series equals the first term
plus the infinite sum of the rest of it. (Contributed by NM,
2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
       
              
     
           |
| |
| Theorem | isumnn0nn 11804* |
Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed
by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
                  


    |
| |
| Theorem | isumrpcl 11805* |
The infinite sum of positive reals is positive. (Contributed by Paul
Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
                          
   |
| |
| Theorem | isumle 11806* |
Comparison of two infinite sums. (Contributed by Paul Chapman,
13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
|
       
           
           
     

  
     |
| |
| Theorem | isumlessdc 11807* |
A finite sum of nonnegative numbers is less than or equal to its limit.
(Contributed by Mario Carneiro, 24-Apr-2014.)
|
                  
 DECID        
 
  
     |
| |
| 4.9.5 Miscellaneous converging and diverging
sequences
|
| |
| Theorem | divcnv 11808* |
The sequence of reciprocals of positive integers, multiplied by the
factor ,
converges to zero. (Contributed by NM, 6-Feb-2008.)
(Revised by Jim Kingdon, 22-Oct-2022.)
|
  
 
  |
| |
| 4.9.6 Arithmetic series
|
| |
| Theorem | arisum 11809* |
Arithmetic series sum of the first positive integers. This is
Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 22-May-2014.)
|
                 |
| |
| Theorem | arisum2 11810* |
Arithmetic series sum of the first nonnegative integers.
(Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV,
2-Aug-2021.)
|
                   |
| |
| Theorem | trireciplem 11811 |
Lemma for trirecip 11812. Show that the sum converges. (Contributed
by
Scott Fenton, 22-Apr-2014.) (Revised by Mario Carneiro,
22-May-2014.)
|
   
      
 |
| |
| Theorem | trirecip 11812 |
The sum of the reciprocals of the triangle numbers converge to two.
This is Metamath 100 proof #42. (Contributed by Scott Fenton,
23-Apr-2014.) (Revised by Mario Carneiro, 22-May-2014.)
|

       |
| |
| 4.9.7 Geometric series
|
| |
| Theorem | expcnvap0 11813* |
A sequence of powers of a complex number with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 23-Oct-2022.)
|
         #   
       |
| |
| Theorem | expcnvre 11814* |
A sequence of powers of a nonnegative real number less than one
converges to zero. (Contributed by Jim Kingdon, 28-Oct-2022.)
|
       
       |
| |
| Theorem | expcnv 11815* |
A sequence of powers of a complex number with absolute value
smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.)
(Revised by Jim Kingdon, 28-Oct-2022.)
|
         
       |
| |
| Theorem | explecnv 11816* |
A sequence of terms converges to zero when it is less than powers of a
number whose
absolute value is smaller than 1. (Contributed by
NM, 19-Jul-2008.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                         
                 |
| |
| Theorem | geosergap 11817* |
The value of the finite geometric series       ...
    . (Contributed by Mario Carneiro, 2-May-2016.)
(Revised by Jim Kingdon, 24-Oct-2022.)
|
   #             ..^                      |
| |
| Theorem | geoserap 11818* |
The value of the finite geometric series
    ...
    . This is Metamath 100 proof #66. (Contributed by
NM, 12-May-2006.) (Revised by Jim Kingdon, 24-Oct-2022.)
|
   #                             |
| |
| Theorem | pwm1geoserap1 11819* |
The n-th power of a number decreased by 1 expressed by the finite
geometric series
    ...     .
(Contributed by AV, 14-Aug-2021.) (Revised by Jim Kingdon,
24-Oct-2022.)
|
     #           
               |
| |
| Theorem | absltap 11820 |
Less-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
           #   |
| |
| Theorem | absgtap 11821 |
Greater-than of absolute value implies apartness. (Contributed by Jim
Kingdon, 29-Oct-2022.)
|
           #   |
| |
| Theorem | geolim 11822* |
The partial sums in the infinite series
    ...
converge to     . (Contributed by NM,
15-May-2006.)
|
                    
         |
| |
| Theorem | geolim2 11823* |
The partial sums in the geometric series       ...
converge to         .
(Contributed by NM,
6-Jun-2006.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                             
          |
| |
| Theorem | georeclim 11824* |
The limit of a geometric series of reciprocals. (Contributed by Paul
Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                      
         |
| |
| Theorem | geo2sum 11825* |
The value of the finite geometric series       ...
   ,
multiplied by a constant. (Contributed by Mario
Carneiro, 17-Mar-2014.) (Revised by Mario Carneiro, 26-Apr-2014.)
|
                
        |
| |
| Theorem | geo2sum2 11826* |
The value of the finite geometric series
...
    . (Contributed by Mario Carneiro, 7-Sep-2016.)
|
   ..^          
   |
| |
| Theorem | geo2lim 11827* |
The value of the infinite geometric series
      ... , multiplied by a constant. (Contributed
by Mario Carneiro, 15-Jun-2014.)
|
        
  
  |
| |
| Theorem | geoisum 11828* |
The infinite sum of     ... is
    .
(Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                  |
| |
| Theorem | geoisumr 11829* |
The infinite sum of reciprocals
        ... is   .
(Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                    |
| |
| Theorem | geoisum1 11830* |
The infinite sum of     ... is     .
(Contributed by NM, 1-Nov-2007.) (Revised by Mario Carneiro,
26-Apr-2014.)
|
                  |
| |
| Theorem | geoisum1c 11831* |
The infinite sum of
        ... is
    . (Contributed by NM, 2-Nov-2007.) (Revised
by Mario Carneiro, 26-Apr-2014.)
|
                
     |
| |
| Theorem | 0.999... 11832 |
The recurring decimal 0.999..., which is defined as the infinite sum 0.9 +
0.09 + 0.009 + ... i.e.         
, is exactly equal to
1. (Contributed by NM, 2-Nov-2007.)
(Revised by AV, 8-Sep-2021.)
|

 ;      |
| |
| Theorem | geoihalfsum 11833 |
Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... =
1. Uses geoisum1 11830. This is a representation of .111... in
binary with
an infinite number of 1's. Theorem 0.999... 11832 proves a similar claim for
.999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.)
(Proof shortened by AV, 9-Jul-2022.)
|

       |
| |
| 4.9.8 Ratio test for infinite series
convergence
|
| |
| Theorem | cvgratnnlembern 11834 |
Lemma for cvgratnn 11842. Upper bound for a geometric progression of
positive ratio less than one. (Contributed by Jim Kingdon,
24-Nov-2022.)
|
                 
     |
| |
| Theorem | cvgratnnlemnexp 11835* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 15-Nov-2022.)
|
                                                                   |
| |
| Theorem | cvgratnnlemmn 11836* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon,
15-Nov-2022.)
|
                                              
       
                  |
| |
| Theorem | cvgratnnlemseq 11837* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
                                              
                            |
| |
| Theorem | cvgratnnlemabsle 11838* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon,
21-Nov-2022.)
|
                                              
   
                     
                |
| |
| Theorem | cvgratnnlemsumlt 11839* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon,
23-Nov-2022.)
|
                                              
             
      |
| |
| Theorem | cvgratnnlemfm 11840* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 23-Nov-2022.)
|
                                                                         |
| |
| Theorem | cvgratnnlemrate 11841* |
Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 21-Nov-2022.)
|
                                              
                                                |
| |
| Theorem | cvgratnn 11842* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite
sequence is
less than 1 for all terms, then the infinite sum of
the terms of
converges to a complex number. Although this
theorem is similar to cvgratz 11843 and cvgratgt0 11844, the decision to
index starting at one is not merely cosmetic, as proving convergence
using climcvg1n 11661 is sensitive to how a sequence is indexed.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
12-Nov-2022.)
|
                                         
 |
| |
| Theorem | cvgratz 11843* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite sequence
is less than 1
for all terms, then the infinite sum of the terms
of converges
to a complex number. (Contributed by NM,
26-Apr-2005.) (Revised by Jim Kingdon, 11-Nov-2022.)
|
             
                                

 |
| |
| Theorem | cvgratgt0 11844* |
Ratio test for convergence of a complex infinite series. If the ratio
of the
absolute values of successive terms in an infinite sequence
is less than 1
for all terms beyond some index , then the
infinite sum of the terms of converges to a complex number.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
11-Nov-2022.)
|
                                                  

 |
| |
| 4.9.9 Mertens' theorem
|
| |
| Theorem | mertenslemub 11845* |
Lemma for mertensabs 11848. An upper bound for . (Contributed by
Jim Kingdon, 3-Dec-2022.)
|
               
                               
                         |
| |
| Theorem | mertenslemi1 11846* |
Lemma for mertensabs 11848. (Contributed by Mario Carneiro,
29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
|
                     
                                       

  
                                                      
 
        
   
               
                                  
       |
| |
| Theorem | mertenslem2 11847* |
Lemma for mertensabs 11848. (Contributed by Mario Carneiro,
28-Apr-2014.)
|
                     
                                       

  
                                                      
 
        
                       
       |
| |
| Theorem | mertensabs 11848* |
Mertens' theorem. If    is an absolutely convergent series and
   is convergent, then
           
                (and
this latter series is convergent). This latter sum is commonly known as
the Cauchy product of the sequences. The proof follows the outline at
http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem.
(Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
                     
                                       

  
    
         |
| |
| 4.9.10 Finite and infinite
products
|
| |
| 4.9.10.1 Product sequences
|
| |
| Theorem | prodf 11849* |
An infinite product of complex terms is a function from an upper set of
integers to .
(Contributed by Scott Fenton, 4-Dec-2017.)
|
       
                |
| |
| Theorem | clim2prod 11850* |
The limit of an infinite product with an initial segment added.
(Contributed by Scott Fenton, 18-Dec-2017.)
|
       
           
    
          |
| |
| Theorem | clim2divap 11851* |
The limit of an infinite product with an initial segment removed.
(Contributed by Scott Fenton, 20-Dec-2017.)
|
       
         
        #    
             |
| |
| Theorem | prod3fmul 11852* |
The product of two infinite products. (Contributed by Scott Fenton,
18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
|
            
           
           
                     
                |
| |
| Theorem | prodf1 11853 |
The value of the partial products in a one-valued infinite product.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
              
  |
| |
| Theorem | prodf1f 11854 |
A one-valued infinite product is equal to the constant one function.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
                  |
| |
| Theorem | prodfclim1 11855 |
The constant one product converges to one. (Contributed by Scott
Fenton, 5-Dec-2017.)
|
              |
| |
| Theorem | prodfap0 11856* |
The product of finitely many terms apart from zero is apart from zero.
(Contributed by Scott Fenton, 14-Jan-2018.) (Revised by Jim Kingdon,
23-Mar-2024.)
|
            
           
    #         #   |
| |
| Theorem | prodfrecap 11857* |
The reciprocal of a finite product. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
    #                          
           

         |
| |
| Theorem | prodfdivap 11858* |
The quotient of two products. (Contributed by Scott Fenton,
15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
|
            
           
           
    #        
        
      
                      |
| |
| 4.9.10.2 Non-trivial convergence
|
| |
| Theorem | ntrivcvgap 11859* |
A non-trivially converging infinite product converges. (Contributed by
Scott Fenton, 18-Dec-2017.)
|
         #   
             
 |
| |
| Theorem | ntrivcvgap0 11860* |
A product that converges to a value apart from zero converges
non-trivially. (Contributed by Scott Fenton, 18-Dec-2017.)
|
         
  #
      #   
   |
| |
| 4.9.10.3 Complex products
|
| |
| Syntax | cprod 11861 |
Extend class notation to include complex products.
|
  |
| |
| Definition | df-proddc 11862* |
Define the product of a series with an index set of integers .
This definition takes most of the aspects of df-sumdc 11665 and adapts them
for multiplication instead of addition. However, we insist that in the
infinite case, there is a nonzero tail of the sequence. This ensures
that the convergence criteria match those of infinite sums.
(Contributed by Scott Fenton, 4-Dec-2017.) (Revised by Jim Kingdon,
21-Mar-2024.)
|

                DECID   
        #           
      
  
             
 

         ![]_ ]_](_urbrack.gif)            |
| |
| Theorem | prodeq1f 11863 |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
     
   |
| |
| Theorem | prodeq1 11864* |
Equality theorem for a product. (Contributed by Scott Fenton,
1-Dec-2017.)
|
 
   |
| |
| Theorem | nfcprod1 11865* |
Bound-variable hypothesis builder for product. (Contributed by Scott
Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | nfcprod 11866* |
Bound-variable hypothesis builder for product: if is (effectively)
not free in
and , it is not free
in   .
(Contributed by Scott Fenton, 1-Dec-2017.)
|
        |
| |
| Theorem | prodeq2w 11867* |
Equality theorem for product, when the class expressions and
are equal everywhere. Proved using only Extensionality. (Contributed
by Scott Fenton, 4-Dec-2017.)
|
      |
| |
| Theorem | prodeq2 11868* |
Equality theorem for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
   |
| |
| Theorem | cbvprod 11869* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
          
  |
| |
| Theorem | cbvprodv 11870* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | cbvprodi 11871* |
Change bound variable in a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
    |
| |
| Theorem | prodeq1i 11872* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|

  |
| |
| Theorem | prodeq2i 11873* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
     |
| |
| Theorem | prodeq12i 11874* |
Equality inference for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
  
  |
| |
| Theorem | prodeq1d 11875* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | prodeq2d 11876* |
Equality deduction for product. Note that unlike prodeq2dv 11877,
may occur in . (Contributed by Scott Fenton, 4-Dec-2017.)
|
        |
| |
| Theorem | prodeq2dv 11877* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
         |
| |
| Theorem | prodeq2sdv 11878* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
       |
| |
| Theorem | 2cprodeq2dv 11879* |
Equality deduction for double product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12dv 11880* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodeq12rdv 11881* |
Equality deduction for product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
      
    |
| |
| Theorem | prodrbdclem 11882* |
Lemma for prodrbdc 11885. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 4-Apr-2024.)
|
    
             DECID              
       
     |
| |
| Theorem | fproddccvg 11883* |
The sequence of partial products of a finite product converges to
the whole product. (Contributed by Scott Fenton, 4-Dec-2017.)
|
    
             DECID                          |
| |
| Theorem | prodrbdclem2 11884* |
Lemma for prodrbdc 11885. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
       
     
   |
| |
| Theorem | prodrbdc 11885* |
Rebase the starting point of a product. (Contributed by Scott Fenton,
4-Dec-2017.)
|
    
                            
DECID
       
DECID
    
  
   |
| |
| Theorem | prodmodclem3 11886* |
Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)     
                            
 
      |
| |
| Theorem | prodmodclem2a 11887* |
Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 11-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
♯  
      ![]_ ]_](_urbrack.gif)           DECID                           ♯         
        |
| |
| Theorem | prodmodclem2 11888* |
Lemma for prodmodc 11889. (Contributed by Scott Fenton, 4-Dec-2017.)
(Revised by Jim Kingdon, 13-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
    
           DECID            #   
   
    
                 
   |
| |
| Theorem | prodmodc 11889* |
A product has at most one limit. (Contributed by Scott Fenton,
4-Dec-2017.) (Modified by Jim Kingdon, 14-Apr-2024.)
|
    
         ♯       
 ![]_ ]_](_urbrack.gif) 
                  DECID   
        #   
   
             
 
        |
| |
| Theorem | zproddc 11890* |
Series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
      DECID            
              |
| |
| Theorem | iprodap 11891* |
Series product with an upper integer index set (i.e. an infinite
product.) (Contributed by Scott Fenton, 5-Dec-2017.)
|
           #   
               
      |
| |
| Theorem | zprodap0 11892* |
Nonzero series product with index set a subset of the upper integers.
(Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
   DECID     
            
      |
| |
| Theorem | iprodap0 11893* |
Nonzero series product with an upper integer index set (i.e. an
infinite product.) (Contributed by Scott Fenton, 6-Dec-2017.)
|
       #
    
  
           
  |
| |
| 4.9.10.4 Finite products
|
| |
| Theorem | fprodseq 11894* |
The value of a product over a nonempty finite set. (Contributed by
Scott Fenton, 6-Dec-2017.) (Revised by Jim Kingdon, 15-Jul-2024.)
|
      
                
    
            
             |
| |
| Theorem | fprodntrivap 11895* |
A non-triviality lemma for finite sequences. (Contributed by Scott
Fenton, 16-Dec-2017.)
|
            
    #  
       
   |
| |
| Theorem | prod0 11896 |
A product over the empty set is one. (Contributed by Scott Fenton,
5-Dec-2017.)
|

 |
| |
| Theorem | prod1dc 11897* |
Any product of one over a valid set is one. (Contributed by Scott
Fenton, 7-Dec-2017.) (Revised by Jim Kingdon, 5-Aug-2024.)
|
            DECID      |
| |
| Theorem | prodfct 11898* |
A lemma to facilitate conversions from the function form to the
class-variable form of a product. (Contributed by Scott Fenton,
7-Dec-2017.)
|
  
     
   |
| |
| Theorem | fprodf1o 11899* |
Re-index a finite product using a bijection. (Contributed by Scott
Fenton, 7-Dec-2017.)
|
  
             
  
       |
| |
| Theorem | prodssdc 11900* |
Change the index set to a subset in an upper integer product.
(Contributed by Scott Fenton, 11-Dec-2017.) (Revised by Jim Kingdon,
6-Aug-2024.)
|
                #                       DECID     
  
             DECID  
    |