HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 152)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremepos 11801 Euler's constant  _e is greater than 0. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  0  <  _e
 
Theoremepr 11802 Euler's constant  _e is a positive real. (Contributed by Jeff Hankins, 22-Nov-2008.)
 |-  _e  e.  RR+
 
Theoremene0 11803  _e is not 0. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  0
 
Theoremeap0 11804  _e is apart from 0. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  0
 
Theoremene1 11805  _e is not 1. (Contributed by David A. Wheeler, 17-Oct-2017.)
 |-  _e  =/=  1
 
Theoremeap1 11806  _e is apart from 1. (Contributed by Jim Kingdon, 7-Jan-2023.)
 |-  _e #  1
 
PART 5  ELEMENTARY NUMBER THEORY

This part introduces elementary number theory, in particular the elementary properties of divisibility and elementary prime number theory.

 
5.1  Elementary properties of divisibility
 
5.1.1  The divides relation
 
Syntaxcdvds 11807 Extend the definition of a class to include the divides relation. See df-dvds 11808.
 class  ||
 
Definitiondf-dvds 11808* Define the divides relation, see definition in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ||  =  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. n  e.  ZZ  ( n  x.  x )  =  y ) }
 
Theoremdivides 11809* Define the divides relation.  M  ||  N means  M divides into  N with no remainder. For example,  3  ||  6 (ex-dvds 14753). As proven in dvdsval3 11811, 
M  ||  N  <->  ( N  mod  M )  =  0. See divides 11809 and dvdsval2 11810 for other equivalent expressions. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <-> 
 E. n  e.  ZZ  ( n  x.  M )  =  N )
 )
 
Theoremdvdsval2 11810 One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
 |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
 
Theoremdvdsval3 11811 One nonzero integer divides another integer if and only if the remainder upon division is zero, see remark in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 15-Jul-2014.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( N  mod  M )  =  0 )
 )
 
Theoremdvdszrcl 11812 Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
 |-  ( X  ||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ )
 )
 
Theoremdvdsmod0 11813 If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022.)
 |-  ( ( M  e.  NN  /\  M  ||  N )  ->  ( N  mod  M )  =  0 )
 
Theoremp1modz1 11814 If a number greater than 1 divides another number, the second number increased by 1 is 1 modulo the first number. (Contributed by AV, 19-Mar-2022.)
 |-  ( ( M  ||  A  /\  1  <  M )  ->  ( ( A  +  1 )  mod  M )  =  1 )
 
Theoremdvdsmodexp 11815 If a positive integer divides another integer, this other integer is equal to its positive powers modulo the positive integer. (Formerly part of the proof for fermltl 12247). (Contributed by Mario Carneiro, 28-Feb-2014.) (Revised by AV, 19-Mar-2022.)
 |-  ( ( N  e.  NN  /\  B  e.  NN  /\  N  ||  A )  ->  ( ( A ^ B )  mod  N )  =  ( A  mod  N ) )
 
Theoremnndivdvds 11816 Strong form of dvdsval2 11810 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.)
 |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( B  ||  A 
 <->  ( A  /  B )  e.  NN )
 )
 
Theoremnndivides 11817* Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  ||  N 
 <-> 
 E. n  e.  NN  ( n  x.  M )  =  N )
 )
 
Theoremdvdsdc 11818 Divisibility is decidable. (Contributed by Jim Kingdon, 14-Nov-2021.)
 |-  ( ( M  e.  NN  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremmoddvds 11819 Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  mod  N )  =  ( B 
 mod  N )  <->  N  ||  ( A  -  B ) ) )
 
Theoremmodm1div 11820 An integer greater than one divides another integer minus one iff the second integer modulo the first integer is one. (Contributed by AV, 30-May-2023.)
 |-  ( ( N  e.  ( ZZ>= `  2 )  /\  A  e.  ZZ )  ->  ( ( A  mod  N )  =  1  <->  N  ||  ( A  -  1 ) ) )
 
Theoremdvds0lem 11821 A lemma to assist theorems of 
|| with no antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  x.  M )  =  N )  ->  M  ||  N )
 
Theoremdvds1lem 11822* A lemma to assist theorems of 
|| with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( J  e.  ZZ  /\  K  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )   &    |-  ( ( ph  /\  x  e.  ZZ )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  x  e. 
 ZZ )  ->  (
 ( x  x.  J )  =  K  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( J  ||  K  ->  M  ||  N ) )
 
Theoremdvds2lem 11823* A lemma to assist theorems of 
|| with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ph  ->  ( I  e.  ZZ  /\  J  e.  ZZ ) )   &    |-  ( ph  ->  ( K  e.  ZZ  /\  L  e.  ZZ ) )   &    |-  ( ph  ->  ( M  e.  ZZ  /\  N  e.  ZZ )
 )   &    |-  ( ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  Z  e.  ZZ )   &    |-  (
 ( ph  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  ->  ( ( ( x  x.  I )  =  J  /\  ( y  x.  K )  =  L )  ->  ( Z  x.  M )  =  N ) )   =>    |-  ( ph  ->  ( ( I  ||  J  /\  K  ||  L )  ->  M  ||  N )
 )
 
Theoremiddvds 11824 An integer divides itself. Theorem 1.1(a) in [ApostolNT] p. 14 (reflexive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  N )
 
Theorem1dvds 11825 1 divides any integer. Theorem 1.1(f) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  1  ||  N )
 
Theoremdvds0 11826 Any integer divides 0. Theorem 1.1(g) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  N  ||  0 )
 
Theoremnegdvdsb 11827 An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  -u M  ||  N ) )
 
Theoremdvdsnegb 11828 An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  -u N ) )
 
Theoremabsdvdsb 11829 An integer divides another iff its absolute value does. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  ( abs `  M )  ||  N ) )
 
Theoremdvdsabsb 11830 An integer divides another iff it divides its absolute value. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( abs `  N ) ) )
 
Theorem0dvds 11831 Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( 0  ||  N  <->  N  =  0 ) )
 
Theoremzdvdsdc 11832 Divisibility of integers is decidable. (Contributed by Jim Kingdon, 17-Jan-2022.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  ||  N )
 
Theoremdvdsmul1 11833 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  ||  ( M  x.  N ) )
 
Theoremdvdsmul2 11834 An integer divides a multiple of itself. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( M  x.  N ) )
 
Theoremiddvdsexp 11835 An integer divides a positive integer power of itself. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  ||  ( M ^ N ) )
 
Theoremmuldvds1 11836 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  K 
 ||  N ) )
 
Theoremmuldvds2 11837 If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  x.  M )  ||  N  ->  M 
 ||  N ) )
 
Theoremdvdscmul 11838 Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( K  x.  M )  ||  ( K  x.  N ) ) )
 
Theoremdvdsmulc 11839 Multiplication by a constant maintains the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  ||  N  ->  ( M  x.  K )  ||  ( N  x.  K ) ) )
 
Theoremdvdscmulr 11840 Cancellation law for the divides relation. Theorem 1.1(e) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( K  x.  M )  ||  ( K  x.  N ) 
 <->  M  ||  N )
 )
 
Theoremdvdsmulcr 11841 Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  ( K  e.  ZZ  /\  K  =/=  0 ) )  ->  ( ( M  x.  K )  ||  ( N  x.  K ) 
 <->  M  ||  N )
 )
 
Theoremsummodnegmod 11842 The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  +  B )  mod  N )  =  0  <->  ( A  mod  N )  =  ( -u B  mod  N ) ) )
 
Theoremmodmulconst 11843 Constant multiplication in a modulo operation, see theorem 5.3 in [ApostolNT] p. 108. (Contributed by AV, 21-Jul-2021.)
 |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  M  e.  NN )  ->  ( ( A  mod  M )  =  ( B  mod  M )  <->  ( ( C  x.  A )  mod  ( C  x.  M ) )  =  (
 ( C  x.  B )  mod  ( C  x.  M ) ) ) )
 
Theoremdvds2ln 11844 If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( I  e.  ZZ  /\  J  e.  ZZ )  /\  ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  ->  (
 ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( ( I  x.  M )  +  ( J  x.  N ) ) ) )
 
Theoremdvds2add 11845 If an integer divides each of two other integers, it divides their sum. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  +  N )
 ) )
 
Theoremdvds2sub 11846 If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  K  ||  N )  ->  K  ||  ( M  -  N ) ) )
 
Theoremdvds2subd 11847 Deduction form of dvds2sub 11846. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  K 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  ( M  -  N ) )
 
Theoremdvdstr 11848 The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  /\  M  ||  N )  ->  K  ||  N ) )
 
Theoremdvds2addd 11849 Deduction form of dvds2add 11845. (Contributed by SN, 21-Aug-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  K 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  ( M  +  N ) )
 
Theoremdvdstrd 11850 The divides relation is transitive, a deduction version of dvdstr 11848. (Contributed by metakunt, 12-May-2024.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   &    |-  ( ph  ->  M 
 ||  N )   =>    |-  ( ph  ->  K 
 ||  N )
 
Theoremdvdsmultr1 11851 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  M  ->  K  ||  ( M  x.  N ) ) )
 
Theoremdvdsmultr1d 11852 Natural deduction form of dvdsmultr1 11851. (Contributed by Stanislas Polu, 9-Mar-2020.)
 |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  ||  M )   =>    |-  ( ph  ->  K  ||  ( M  x.  N ) )
 
Theoremdvdsmultr2 11853 If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  ||  N  ->  K  ||  ( M  x.  N ) ) )
 
Theoremordvdsmul 11854 If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  ||  M  \/  K  ||  N )  ->  K  ||  ( M  x.  N ) ) )
 
Theoremdvdssub2 11855 If an integer divides a difference, then it divides one term iff it divides the other. (Contributed by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  K  ||  ( M  -  N ) )  ->  ( K 
 ||  M  <->  K  ||  N ) )
 
Theoremdvdsadd 11856 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  +  N ) ) )
 
Theoremdvdsaddr 11857 An integer divides another iff it divides their sum. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  +  M ) ) )
 
Theoremdvdssub 11858 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( M  -  N ) ) )
 
Theoremdvdssubr 11859 An integer divides another iff it divides their difference. (Contributed by Paul Chapman, 31-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N 
 <->  M  ||  ( N  -  M ) ) )
 
Theoremdvdsadd2b 11860 Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremdvdsaddre2b 11861 Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b 11860 only requiring  B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  RR  /\  ( C  e.  ZZ  /\  A  ||  C )
 )  ->  ( A  ||  B  <->  A  ||  ( C  +  B ) ) )
 
Theoremdvdslelemd 11862 Lemma for dvdsle 11863. (Contributed by Jim Kingdon, 8-Nov-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( K  x.  M )  =/= 
 N )
 
Theoremdvdsle 11863 The divisors of a positive integer are bounded by it. The proof does not use  /. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  ||  N  ->  M  <_  N ) )
 
Theoremdvdsleabs 11864 The divisors of a nonzero integer are bounded by its absolute value. Theorem 1.1(i) in [ApostolNT] p. 14 (comparison property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by Fan Zheng, 3-Jul-2016.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  M  <_  ( abs `  N ) ) )
 
Theoremdvdsleabs2 11865 Transfer divisibility to an order constraint on absolute values. (Contributed by Stefan O'Rear, 24-Sep-2014.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 ) 
 ->  ( M  ||  N  ->  ( abs `  M )  <_  ( abs `  N ) ) )
 
Theoremdvdsabseq 11866 If two integers divide each other, they must be equal, up to a difference in sign. Theorem 1.1(j) in [ApostolNT] p. 14. (Contributed by Mario Carneiro, 30-May-2014.) (Revised by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  N  ||  M )  ->  ( abs `  M )  =  ( abs `  N ) )
 
Theoremdvdseq 11867 If two nonnegative integers divide each other, they must be equal. (Contributed by Mario Carneiro, 30-May-2014.) (Proof shortened by AV, 7-Aug-2021.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN0 )  /\  ( M 
 ||  N  /\  N  ||  M ) )  ->  M  =  N )
 
Theoremdivconjdvds 11868 If a nonzero integer  M divides another integer  N, the other integer  N divided by the nonzero integer  M (i.e. the divisor conjugate of  N to  M) divides the other integer  N. Theorem 1.1(k) in [ApostolNT] p. 14. (Contributed by AV, 7-Aug-2021.)
 |-  ( ( M  ||  N  /\  M  =/=  0
 )  ->  ( N  /  M )  ||  N )
 
Theoremdvdsdivcl 11869* The complement of a divisor of  N is also a divisor of  N. (Contributed by Mario Carneiro, 2-Jul-2015.) (Proof shortened by AV, 9-Aug-2021.)
 |-  ( ( N  e.  NN  /\  A  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  A )  e.  { x  e. 
 NN  |  x  ||  N } )
 
Theoremdvdsflip 11870* An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
 |-  A  =  { x  e.  NN  |  x  ||  N }   &    |-  F  =  ( y  e.  A  |->  ( N  /  y ) )   =>    |-  ( N  e.  NN  ->  F : A -1-1-onto-> A )
 
Theoremdvdsssfz1 11871* The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014.)
 |-  ( A  e.  NN  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
 
Theoremdvds1 11872 The only nonnegative integer that divides 1 is 1. (Contributed by Mario Carneiro, 2-Jul-2015.)
 |-  ( M  e.  NN0  ->  ( M  ||  1  <->  M  =  1
 ) )
 
Theoremalzdvds 11873* Only 0 is divisible by all integers. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( N  e.  ZZ  ->  ( A. x  e. 
 ZZ  x  ||  N  <->  N  =  0 ) )
 
Theoremdvdsext 11874* Poset extensionality for division. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  ( A  =  B  <->  A. x  e.  NN0  ( A  ||  x  <->  B  ||  x ) ) )
 
Theoremfzm1ndvds 11875 No number between  1 and  M  - 
1 divides  M. (Contributed by Mario Carneiro, 24-Jan-2015.)
 |-  ( ( M  e.  NN  /\  N  e.  (
 1 ... ( M  -  1 ) ) ) 
 ->  -.  M  ||  N )
 
Theoremfzo0dvdseq 11876 Zero is the only one of the first 
A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( B  e.  (
 0..^ A )  ->  ( A  ||  B  <->  B  =  0
 ) )
 
Theoremfzocongeq 11877 Two different elements of a half-open range are not congruent mod its length. (Contributed by Stefan O'Rear, 6-Sep-2015.)
 |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( D  -  C )  ||  ( A  -  B )  <->  A  =  B ) )
 
TheoremaddmodlteqALT 11878 Two nonnegative integers less than the modulus are equal iff the sums of these integer with another integer are equal modulo the modulus. Shorter proof of addmodlteq 10411 based on the "divides" relation. (Contributed by AV, 14-Mar-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( ( I  e.  ( 0..^ N ) 
 /\  J  e.  (
 0..^ N )  /\  S  e.  ZZ )  ->  ( ( ( I  +  S )  mod  N )  =  ( ( J  +  S ) 
 mod  N )  <->  I  =  J ) )
 
Theoremdvdsfac 11879 A positive integer divides any greater factorial. (Contributed by Paul Chapman, 28-Nov-2012.)
 |-  ( ( K  e.  NN  /\  N  e.  ( ZZ>=
 `  K ) ) 
 ->  K  ||  ( ! `  N ) )
 
Theoremdvdsexp 11880 A power divides a power with a greater exponent. (Contributed by Mario Carneiro, 23-Feb-2014.)
 |-  ( ( A  e.  ZZ  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  ->  ( A ^ M ) 
 ||  ( A ^ N ) )
 
Theoremdvdsmod 11881 Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
 |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P 
 ||  ( K  mod  N )  <->  P  ||  K ) )
 
Theoremmulmoddvds 11882 If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
 |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( N  ||  A  ->  ( ( A  x.  B )  mod  N )  =  0 ) )
 
Theorem3dvdsdec 11883 A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A and  B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A and  B, especially if  A is itself a decimal number, e.g.,  A  = ; C D. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 8-Sep-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   =>    |-  ( 3  || ; A B  <->  3  ||  ( A  +  B )
 )
 
Theorem3dvds2dec 11884 A decimal number is divisible by three iff the sum of its three "digits" is divisible by three. The term "digits" in its narrow sense is only correct if  A,  B and  C actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers  A,  B and  C. (Contributed by AV, 14-Jun-2021.) (Revised by AV, 1-Aug-2021.)
 |-  A  e.  NN0   &    |-  B  e.  NN0   &    |-  C  e.  NN0   =>    |-  ( 3  || ;; A B C  <->  3  ||  (
 ( A  +  B )  +  C )
 )
 
5.1.2  Even and odd numbers

The set  ZZ of integers can be partitioned into the set of even numbers and the set of odd numbers, see zeo4 11888. Instead of defining new class variables Even and Odd to represent these sets, we use the idiom  2 
||  N to say that " N is even" (which implies  N  e.  ZZ, see evenelz 11885) and  -.  2  ||  N to say that " N is odd" (under the assumption that  N  e.  ZZ). The previously proven theorems about even and odd numbers, like zneo 9367, zeo 9371, zeo2 9372, etc. use different representations, which are equivalent with the representations using the divides relation, see evend2 11907 and oddp1d2 11908. The corresponding theorems are zeneo 11889, zeo3 11886 and zeo4 11888.

 
Theoremevenelz 11885 An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11812. (Contributed by AV, 22-Jun-2021.)
 |-  ( 2  ||  N  ->  N  e.  ZZ )
 
Theoremzeo3 11886 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/  -.  2  ||  N ) )
 
Theoremzeoxor 11887 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  \/_  -.  2  ||  N ) )
 
Theoremzeo4 11888 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
 |-  ( N  e.  ZZ  ->  ( 2  ||  N  <->  -. 
 -.  2  ||  N ) )
 
Theoremzeneo 11889 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9367 follows immediately from the fact that a contradiction implies anything, see pm2.21i 647. (Contributed by AV, 22-Jun-2021.)
 |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( 2 
 ||  A  /\  -.  2  ||  B )  ->  A  =/=  B ) )
 
Theoremodd2np1lem 11890* Lemma for odd2np1 11891. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  (
 k  x.  2 )  =  N ) )
 
Theoremodd2np1 11891* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <-> 
 E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremeven2n 11892* An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
 |-  ( 2  ||  N  <->  E. n  e.  ZZ  (
 2  x.  n )  =  N )
 
Theoremoddm1even 11893 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  -  1 ) ) )
 
Theoremoddp1even 11894 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
 |-  ( N  e.  ZZ  ->  ( -.  2  ||  N 
 <->  2  ||  ( N  +  1 ) ) )
 
Theoremoexpneg 11895 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
 |-  ( ( A  e.  CC  /\  N  e.  NN  /\ 
 -.  2  ||  N )  ->  ( -u A ^ N )  =  -u ( A ^ N ) )
 
Theoremmod2eq0even 11896 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  0  <->  2 
 ||  N ) )
 
Theoremmod2eq1n2dvds 11897 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
 |-  ( N  e.  ZZ  ->  ( ( N  mod  2 )  =  1  <->  -.  2  ||  N )
 )
 
Theoremoddnn02np1 11898* A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
 |-  ( N  e.  NN0  ->  ( -.  2  ||  N  <->  E. n  e.  NN0  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremoddge22np1 11899* An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
 |-  ( N  e.  ( ZZ>=
 `  2 )  ->  ( -.  2  ||  N  <->  E. n  e.  NN  (
 ( 2  x.  n )  +  1 )  =  N ) )
 
Theoremevennn02n 11900* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
 |-  ( N  e.  NN0  ->  ( 2  ||  N  <->  E. n  e.  NN0  (
 2  x.  n )  =  N ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15104
  Copyright terms: Public domain < Previous  Next >