| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > odd2np1lem | Unicode version | ||
| Description: Lemma for odd2np1 12184. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| odd2np1lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2215 |
. . . 4
| |
| 2 | 1 | rexbidv 2507 |
. . 3
|
| 3 | eqeq2 2215 |
. . . 4
| |
| 4 | 3 | rexbidv 2507 |
. . 3
|
| 5 | 2, 4 | orbi12d 795 |
. 2
|
| 6 | eqeq2 2215 |
. . . . 5
| |
| 7 | 6 | rexbidv 2507 |
. . . 4
|
| 8 | oveq2 5952 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 5959 |
. . . . . 6
|
| 10 | 9 | eqeq1d 2214 |
. . . . 5
|
| 11 | 10 | cbvrexv 2739 |
. . . 4
|
| 12 | 7, 11 | bitrdi 196 |
. . 3
|
| 13 | eqeq2 2215 |
. . . . 5
| |
| 14 | 13 | rexbidv 2507 |
. . . 4
|
| 15 | oveq1 5951 |
. . . . . 6
| |
| 16 | 15 | eqeq1d 2214 |
. . . . 5
|
| 17 | 16 | cbvrexv 2739 |
. . . 4
|
| 18 | 14, 17 | bitrdi 196 |
. . 3
|
| 19 | 12, 18 | orbi12d 795 |
. 2
|
| 20 | eqeq2 2215 |
. . . 4
| |
| 21 | 20 | rexbidv 2507 |
. . 3
|
| 22 | eqeq2 2215 |
. . . 4
| |
| 23 | 22 | rexbidv 2507 |
. . 3
|
| 24 | 21, 23 | orbi12d 795 |
. 2
|
| 25 | eqeq2 2215 |
. . . 4
| |
| 26 | 25 | rexbidv 2507 |
. . 3
|
| 27 | eqeq2 2215 |
. . . 4
| |
| 28 | 27 | rexbidv 2507 |
. . 3
|
| 29 | 26, 28 | orbi12d 795 |
. 2
|
| 30 | 0z 9383 |
. . . 4
| |
| 31 | 2cn 9107 |
. . . . 5
| |
| 32 | 31 | mul02i 8462 |
. . . 4
|
| 33 | oveq1 5951 |
. . . . . 6
| |
| 34 | 33 | eqeq1d 2214 |
. . . . 5
|
| 35 | 34 | rspcev 2877 |
. . . 4
|
| 36 | 30, 32, 35 | mp2an 426 |
. . 3
|
| 37 | 36 | olci 734 |
. 2
|
| 38 | orcom 730 |
. . 3
| |
| 39 | zcn 9377 |
. . . . . . . . 9
| |
| 40 | mulcom 8054 |
. . . . . . . . 9
| |
| 41 | 39, 31, 40 | sylancl 413 |
. . . . . . . 8
|
| 42 | 41 | adantl 277 |
. . . . . . 7
|
| 43 | 42 | eqeq1d 2214 |
. . . . . 6
|
| 44 | eqid 2205 |
. . . . . . . . 9
| |
| 45 | oveq2 5952 |
. . . . . . . . . . . 12
| |
| 46 | 45 | oveq1d 5959 |
. . . . . . . . . . 11
|
| 47 | 46 | eqeq1d 2214 |
. . . . . . . . . 10
|
| 48 | 47 | rspcev 2877 |
. . . . . . . . 9
|
| 49 | 44, 48 | mpan2 425 |
. . . . . . . 8
|
| 50 | oveq1 5951 |
. . . . . . . . . 10
| |
| 51 | 50 | eqeq2d 2217 |
. . . . . . . . 9
|
| 52 | 51 | rexbidv 2507 |
. . . . . . . 8
|
| 53 | 49, 52 | syl5ibcom 155 |
. . . . . . 7
|
| 54 | 53 | adantl 277 |
. . . . . 6
|
| 55 | 43, 54 | sylbid 150 |
. . . . 5
|
| 56 | 55 | rexlimdva 2623 |
. . . 4
|
| 57 | peano2z 9408 |
. . . . . . . 8
| |
| 58 | 57 | adantl 277 |
. . . . . . 7
|
| 59 | zcn 9377 |
. . . . . . . . 9
| |
| 60 | mulcom 8054 |
. . . . . . . . . . . . 13
| |
| 61 | 31, 60 | mpan2 425 |
. . . . . . . . . . . 12
|
| 62 | 31 | mullidi 8075 |
. . . . . . . . . . . . 13
|
| 63 | 62 | a1i 9 |
. . . . . . . . . . . 12
|
| 64 | 61, 63 | oveq12d 5962 |
. . . . . . . . . . 11
|
| 65 | df-2 9095 |
. . . . . . . . . . . 12
| |
| 66 | 65 | oveq2i 5955 |
. . . . . . . . . . 11
|
| 67 | 64, 66 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 68 | ax-1cn 8018 |
. . . . . . . . . . 11
| |
| 69 | adddir 8063 |
. . . . . . . . . . 11
| |
| 70 | 68, 31, 69 | mp3an23 1342 |
. . . . . . . . . 10
|
| 71 | mulcl 8052 |
. . . . . . . . . . . 12
| |
| 72 | 31, 71 | mpan 424 |
. . . . . . . . . . 11
|
| 73 | addass 8055 |
. . . . . . . . . . . 12
| |
| 74 | 68, 68, 73 | mp3an23 1342 |
. . . . . . . . . . 11
|
| 75 | 72, 74 | syl 14 |
. . . . . . . . . 10
|
| 76 | 67, 70, 75 | 3eqtr4d 2248 |
. . . . . . . . 9
|
| 77 | 59, 76 | syl 14 |
. . . . . . . 8
|
| 78 | 77 | adantl 277 |
. . . . . . 7
|
| 79 | oveq1 5951 |
. . . . . . . . 9
| |
| 80 | 79 | eqeq1d 2214 |
. . . . . . . 8
|
| 81 | 80 | rspcev 2877 |
. . . . . . 7
|
| 82 | 58, 78, 81 | syl2anc 411 |
. . . . . 6
|
| 83 | oveq1 5951 |
. . . . . . . 8
| |
| 84 | 83 | eqeq2d 2217 |
. . . . . . 7
|
| 85 | 84 | rexbidv 2507 |
. . . . . 6
|
| 86 | 82, 85 | syl5ibcom 155 |
. . . . 5
|
| 87 | 86 | rexlimdva 2623 |
. . . 4
|
| 88 | 56, 87 | orim12d 788 |
. . 3
|
| 89 | 38, 88 | biimtrid 152 |
. 2
|
| 90 | 5, 19, 24, 29, 37, 89 | nn0ind 9487 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-2 9095 df-n0 9296 df-z 9373 |
| This theorem is referenced by: odd2np1 12184 |
| Copyright terms: Public domain | W3C validator |