Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > odd2np1lem | Unicode version |
Description: Lemma for odd2np1 11810. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
odd2np1lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 2175 | . . . 4 | |
2 | 1 | rexbidv 2467 | . . 3 |
3 | eqeq2 2175 | . . . 4 | |
4 | 3 | rexbidv 2467 | . . 3 |
5 | 2, 4 | orbi12d 783 | . 2 |
6 | eqeq2 2175 | . . . . 5 | |
7 | 6 | rexbidv 2467 | . . . 4 |
8 | oveq2 5850 | . . . . . . 7 | |
9 | 8 | oveq1d 5857 | . . . . . 6 |
10 | 9 | eqeq1d 2174 | . . . . 5 |
11 | 10 | cbvrexv 2693 | . . . 4 |
12 | 7, 11 | bitrdi 195 | . . 3 |
13 | eqeq2 2175 | . . . . 5 | |
14 | 13 | rexbidv 2467 | . . . 4 |
15 | oveq1 5849 | . . . . . 6 | |
16 | 15 | eqeq1d 2174 | . . . . 5 |
17 | 16 | cbvrexv 2693 | . . . 4 |
18 | 14, 17 | bitrdi 195 | . . 3 |
19 | 12, 18 | orbi12d 783 | . 2 |
20 | eqeq2 2175 | . . . 4 | |
21 | 20 | rexbidv 2467 | . . 3 |
22 | eqeq2 2175 | . . . 4 | |
23 | 22 | rexbidv 2467 | . . 3 |
24 | 21, 23 | orbi12d 783 | . 2 |
25 | eqeq2 2175 | . . . 4 | |
26 | 25 | rexbidv 2467 | . . 3 |
27 | eqeq2 2175 | . . . 4 | |
28 | 27 | rexbidv 2467 | . . 3 |
29 | 26, 28 | orbi12d 783 | . 2 |
30 | 0z 9202 | . . . 4 | |
31 | 2cn 8928 | . . . . 5 | |
32 | 31 | mul02i 8288 | . . . 4 |
33 | oveq1 5849 | . . . . . 6 | |
34 | 33 | eqeq1d 2174 | . . . . 5 |
35 | 34 | rspcev 2830 | . . . 4 |
36 | 30, 32, 35 | mp2an 423 | . . 3 |
37 | 36 | olci 722 | . 2 |
38 | orcom 718 | . . 3 | |
39 | zcn 9196 | . . . . . . . . 9 | |
40 | mulcom 7882 | . . . . . . . . 9 | |
41 | 39, 31, 40 | sylancl 410 | . . . . . . . 8 |
42 | 41 | adantl 275 | . . . . . . 7 |
43 | 42 | eqeq1d 2174 | . . . . . 6 |
44 | eqid 2165 | . . . . . . . . 9 | |
45 | oveq2 5850 | . . . . . . . . . . . 12 | |
46 | 45 | oveq1d 5857 | . . . . . . . . . . 11 |
47 | 46 | eqeq1d 2174 | . . . . . . . . . 10 |
48 | 47 | rspcev 2830 | . . . . . . . . 9 |
49 | 44, 48 | mpan2 422 | . . . . . . . 8 |
50 | oveq1 5849 | . . . . . . . . . 10 | |
51 | 50 | eqeq2d 2177 | . . . . . . . . 9 |
52 | 51 | rexbidv 2467 | . . . . . . . 8 |
53 | 49, 52 | syl5ibcom 154 | . . . . . . 7 |
54 | 53 | adantl 275 | . . . . . 6 |
55 | 43, 54 | sylbid 149 | . . . . 5 |
56 | 55 | rexlimdva 2583 | . . . 4 |
57 | peano2z 9227 | . . . . . . . 8 | |
58 | 57 | adantl 275 | . . . . . . 7 |
59 | zcn 9196 | . . . . . . . . 9 | |
60 | mulcom 7882 | . . . . . . . . . . . . 13 | |
61 | 31, 60 | mpan2 422 | . . . . . . . . . . . 12 |
62 | 31 | mulid2i 7902 | . . . . . . . . . . . . 13 |
63 | 62 | a1i 9 | . . . . . . . . . . . 12 |
64 | 61, 63 | oveq12d 5860 | . . . . . . . . . . 11 |
65 | df-2 8916 | . . . . . . . . . . . 12 | |
66 | 65 | oveq2i 5853 | . . . . . . . . . . 11 |
67 | 64, 66 | eqtrdi 2215 | . . . . . . . . . 10 |
68 | ax-1cn 7846 | . . . . . . . . . . 11 | |
69 | adddir 7890 | . . . . . . . . . . 11 | |
70 | 68, 31, 69 | mp3an23 1319 | . . . . . . . . . 10 |
71 | mulcl 7880 | . . . . . . . . . . . 12 | |
72 | 31, 71 | mpan 421 | . . . . . . . . . . 11 |
73 | addass 7883 | . . . . . . . . . . . 12 | |
74 | 68, 68, 73 | mp3an23 1319 | . . . . . . . . . . 11 |
75 | 72, 74 | syl 14 | . . . . . . . . . 10 |
76 | 67, 70, 75 | 3eqtr4d 2208 | . . . . . . . . 9 |
77 | 59, 76 | syl 14 | . . . . . . . 8 |
78 | 77 | adantl 275 | . . . . . . 7 |
79 | oveq1 5849 | . . . . . . . . 9 | |
80 | 79 | eqeq1d 2174 | . . . . . . . 8 |
81 | 80 | rspcev 2830 | . . . . . . 7 |
82 | 58, 78, 81 | syl2anc 409 | . . . . . 6 |
83 | oveq1 5849 | . . . . . . . 8 | |
84 | 83 | eqeq2d 2177 | . . . . . . 7 |
85 | 84 | rexbidv 2467 | . . . . . 6 |
86 | 82, 85 | syl5ibcom 154 | . . . . 5 |
87 | 86 | rexlimdva 2583 | . . . 4 |
88 | 56, 87 | orim12d 776 | . . 3 |
89 | 38, 88 | syl5bi 151 | . 2 |
90 | 5, 19, 24, 29, 37, 89 | nn0ind 9305 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 c2 8908 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 |
This theorem is referenced by: odd2np1 11810 |
Copyright terms: Public domain | W3C validator |