ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1lem Unicode version

Theorem odd2np1lem 12016
Description: Lemma for odd2np1 12017. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Distinct variable groups:    k, N    n, N

Proof of Theorem odd2np1lem
Dummy variables  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2203 . . . 4  |-  ( j  =  0  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  0 ) )
21rexbidv 2495 . . 3  |-  ( j  =  0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0 ) )
3 eqeq2 2203 . . . 4  |-  ( j  =  0  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  0 ) )
43rexbidv 2495 . . 3  |-  ( j  =  0  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) )
52, 4orbi12d 794 . 2  |-  ( j  =  0  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0  \/  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) ) )
6 eqeq2 2203 . . . . 5  |-  ( j  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  m ) )
76rexbidv 2495 . . . 4  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  m ) )
8 oveq2 5927 . . . . . . 7  |-  ( n  =  x  ->  (
2  x.  n )  =  ( 2  x.  x ) )
98oveq1d 5934 . . . . . 6  |-  ( n  =  x  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  x )  +  1 ) )
109eqeq1d 2202 . . . . 5  |-  ( n  =  x  ->  (
( ( 2  x.  n )  +  1 )  =  m  <->  ( (
2  x.  x )  +  1 )  =  m ) )
1110cbvrexv 2727 . . . 4  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  m  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )
127, 11bitrdi 196 . . 3  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
13 eqeq2 2203 . . . . 5  |-  ( j  =  m  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  m ) )
1413rexbidv 2495 . . . 4  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  m ) )
15 oveq1 5926 . . . . . 6  |-  ( k  =  y  ->  (
k  x.  2 )  =  ( y  x.  2 ) )
1615eqeq1d 2202 . . . . 5  |-  ( k  =  y  ->  (
( k  x.  2 )  =  m  <->  ( y  x.  2 )  =  m ) )
1716cbvrexv 2727 . . . 4  |-  ( E. k  e.  ZZ  (
k  x.  2 )  =  m  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m )
1814, 17bitrdi 196 . . 3  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m ) )
1912, 18orbi12d 794 . 2  |-  ( j  =  m  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/  E. y  e.  ZZ  ( y  x.  2 )  =  m ) ) )
20 eqeq2 2203 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
2120rexbidv 2495 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
22 eqeq2 2203 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
2322rexbidv 2495 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
2421, 23orbi12d 794 . 2  |-  ( j  =  ( m  + 
1 )  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
25 eqeq2 2203 . . . 4  |-  ( j  =  N  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  N ) )
2625rexbidv 2495 . . 3  |-  ( j  =  N  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
27 eqeq2 2203 . . . 4  |-  ( j  =  N  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  N ) )
2827rexbidv 2495 . . 3  |-  ( j  =  N  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
2926, 28orbi12d 794 . 2  |-  ( j  =  N  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
30 0z 9331 . . . 4  |-  0  e.  ZZ
31 2cn 9055 . . . . 5  |-  2  e.  CC
3231mul02i 8411 . . . 4  |-  ( 0  x.  2 )  =  0
33 oveq1 5926 . . . . . 6  |-  ( k  =  0  ->  (
k  x.  2 )  =  ( 0  x.  2 ) )
3433eqeq1d 2202 . . . . 5  |-  ( k  =  0  ->  (
( k  x.  2 )  =  0  <->  (
0  x.  2 )  =  0 ) )
3534rspcev 2865 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( 0  x.  2 )  =  0 )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  0 )
3630, 32, 35mp2an 426 . . 3  |-  E. k  e.  ZZ  ( k  x.  2 )  =  0
3736olci 733 . 2  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  0  \/  E. k  e.  ZZ  (
k  x.  2 )  =  0 )
38 orcom 729 . . 3  |-  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  <-> 
( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
39 zcn 9325 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
40 mulcom 8003 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4139, 31, 40sylancl 413 . . . . . . . 8  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  =  ( 2  x.  y ) )
4241adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4342eqeq1d 2202 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  <-> 
( 2  x.  y
)  =  m ) )
44 eqid 2193 . . . . . . . . 9  |-  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 )
45 oveq2 5927 . . . . . . . . . . . 12  |-  ( n  =  y  ->  (
2  x.  n )  =  ( 2  x.  y ) )
4645oveq1d 5934 . . . . . . . . . . 11  |-  ( n  =  y  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4746eqeq1d 2202 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) ) )
4847rspcev 2865 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4944, 48mpan2 425 . . . . . . . 8  |-  ( y  e.  ZZ  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y
)  +  1 ) )
50 oveq1 5926 . . . . . . . . . 10  |-  ( ( 2  x.  y )  =  m  ->  (
( 2  x.  y
)  +  1 )  =  ( m  + 
1 ) )
5150eqeq2d 2205 . . . . . . . . 9  |-  ( ( 2  x.  y )  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5251rexbidv 2495 . . . . . . . 8  |-  ( ( 2  x.  y )  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5349, 52syl5ibcom 155 . . . . . . 7  |-  ( y  e.  ZZ  ->  (
( 2  x.  y
)  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5453adantl 277 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( 2  x.  y )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5543, 54sylbid 150 . . . . 5  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5655rexlimdva 2611 . . . 4  |-  ( m  e.  NN0  ->  ( E. y  e.  ZZ  (
y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
57 peano2z 9356 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
5857adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( x  +  1 )  e.  ZZ )
59 zcn 9325 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
60 mulcom 8003 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( x  x.  2 )  =  ( 2  x.  x ) )
6131, 60mpan2 425 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x  x.  2 )  =  ( 2  x.  x ) )
6231mullidi 8024 . . . . . . . . . . . . 13  |-  ( 1  x.  2 )  =  2
6362a1i 9 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
1  x.  2 )  =  2 )
6461, 63oveq12d 5937 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  2 ) )
65 df-2 9043 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
6665oveq2i 5930 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  +  2 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) )
6764, 66eqtrdi 2242 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
68 ax-1cn 7967 . . . . . . . . . . 11  |-  1  e.  CC
69 adddir 8012 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
7068, 31, 69mp3an23 1340 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
71 mulcl 8001 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
7231, 71mpan 424 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
73 addass 8004 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  x
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7468, 68, 73mp3an23 1340 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7572, 74syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7667, 70, 753eqtr4d 2236 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7759, 76syl 14 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7877adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
79 oveq1 5926 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  (
k  x.  2 )  =  ( ( x  +  1 )  x.  2 ) )
8079eqeq1d 2202 . . . . . . . 8  |-  ( k  =  ( x  + 
1 )  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( (
x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) ) )
8180rspcev 2865 . . . . . . 7  |-  ( ( ( x  +  1 )  e.  ZZ  /\  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
8258, 78, 81syl2anc 411 . . . . . 6  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
83 oveq1 5926 . . . . . . . 8  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( m  + 
1 ) )
8483eqeq2d 2205 . . . . . . 7  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
8584rexbidv 2495 . . . . . 6  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8682, 85syl5ibcom 155 . . . . 5  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8786rexlimdva 2611 . . . 4  |-  ( m  e.  NN0  ->  ( E. x  e.  ZZ  (
( 2  x.  x
)  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8856, 87orim12d 787 . . 3  |-  ( m  e.  NN0  ->  ( ( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/ 
E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
8938, 88biimtrid 152 . 2  |-  ( m  e.  NN0  ->  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
905, 19, 24, 29, 37, 89nn0ind 9434 1  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   E.wrex 2473  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879   2c2 9035   NN0cn0 9243   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321
This theorem is referenced by:  odd2np1  12017
  Copyright terms: Public domain W3C validator