ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odd2np1lem Unicode version

Theorem odd2np1lem 11869
Description: Lemma for odd2np1 11870. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1lem  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Distinct variable groups:    k, N    n, N

Proof of Theorem odd2np1lem
Dummy variables  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2187 . . . 4  |-  ( j  =  0  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  0 ) )
21rexbidv 2478 . . 3  |-  ( j  =  0  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0 ) )
3 eqeq2 2187 . . . 4  |-  ( j  =  0  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  0 ) )
43rexbidv 2478 . . 3  |-  ( j  =  0  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) )
52, 4orbi12d 793 . 2  |-  ( j  =  0  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  0  \/  E. k  e.  ZZ  ( k  x.  2 )  =  0 ) ) )
6 eqeq2 2187 . . . . 5  |-  ( j  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  m ) )
76rexbidv 2478 . . . 4  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  m ) )
8 oveq2 5880 . . . . . . 7  |-  ( n  =  x  ->  (
2  x.  n )  =  ( 2  x.  x ) )
98oveq1d 5887 . . . . . 6  |-  ( n  =  x  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  x )  +  1 ) )
109eqeq1d 2186 . . . . 5  |-  ( n  =  x  ->  (
( ( 2  x.  n )  +  1 )  =  m  <->  ( (
2  x.  x )  +  1 )  =  m ) )
1110cbvrexv 2704 . . . 4  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  m  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )
127, 11bitrdi 196 . . 3  |-  ( j  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
13 eqeq2 2187 . . . . 5  |-  ( j  =  m  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  m ) )
1413rexbidv 2478 . . . 4  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  m ) )
15 oveq1 5879 . . . . . 6  |-  ( k  =  y  ->  (
k  x.  2 )  =  ( y  x.  2 ) )
1615eqeq1d 2186 . . . . 5  |-  ( k  =  y  ->  (
( k  x.  2 )  =  m  <->  ( y  x.  2 )  =  m ) )
1716cbvrexv 2704 . . . 4  |-  ( E. k  e.  ZZ  (
k  x.  2 )  =  m  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m )
1814, 17bitrdi 196 . . 3  |-  ( j  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. y  e.  ZZ  ( y  x.  2 )  =  m ) )
1912, 18orbi12d 793 . 2  |-  ( j  =  m  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/  E. y  e.  ZZ  ( y  x.  2 )  =  m ) ) )
20 eqeq2 2187 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
2120rexbidv 2478 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
22 eqeq2 2187 . . . 4  |-  ( j  =  ( m  + 
1 )  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
2322rexbidv 2478 . . 3  |-  ( j  =  ( m  + 
1 )  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
2421, 23orbi12d 793 . 2  |-  ( j  =  ( m  + 
1 )  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
25 eqeq2 2187 . . . 4  |-  ( j  =  N  ->  (
( ( 2  x.  n )  +  1 )  =  j  <->  ( (
2  x.  n )  +  1 )  =  N ) )
2625rexbidv 2478 . . 3  |-  ( j  =  N  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
27 eqeq2 2187 . . . 4  |-  ( j  =  N  ->  (
( k  x.  2 )  =  j  <->  ( k  x.  2 )  =  N ) )
2827rexbidv 2478 . . 3  |-  ( j  =  N  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  j  <->  E. k  e.  ZZ  ( k  x.  2 )  =  N ) )
2926, 28orbi12d 793 . 2  |-  ( j  =  N  ->  (
( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  j  \/  E. k  e.  ZZ  ( k  x.  2 )  =  j )  <->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N  \/  E. k  e.  ZZ  ( k  x.  2 )  =  N ) ) )
30 0z 9260 . . . 4  |-  0  e.  ZZ
31 2cn 8986 . . . . 5  |-  2  e.  CC
3231mul02i 8343 . . . 4  |-  ( 0  x.  2 )  =  0
33 oveq1 5879 . . . . . 6  |-  ( k  =  0  ->  (
k  x.  2 )  =  ( 0  x.  2 ) )
3433eqeq1d 2186 . . . . 5  |-  ( k  =  0  ->  (
( k  x.  2 )  =  0  <->  (
0  x.  2 )  =  0 ) )
3534rspcev 2841 . . . 4  |-  ( ( 0  e.  ZZ  /\  ( 0  x.  2 )  =  0 )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  0 )
3630, 32, 35mp2an 426 . . 3  |-  E. k  e.  ZZ  ( k  x.  2 )  =  0
3736olci 732 . 2  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  0  \/  E. k  e.  ZZ  (
k  x.  2 )  =  0 )
38 orcom 728 . . 3  |-  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  <-> 
( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/  E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m ) )
39 zcn 9254 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
40 mulcom 7937 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  2  e.  CC )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4139, 31, 40sylancl 413 . . . . . . . 8  |-  ( y  e.  ZZ  ->  (
y  x.  2 )  =  ( 2  x.  y ) )
4241adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( y  x.  2 )  =  ( 2  x.  y ) )
4342eqeq1d 2186 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  <-> 
( 2  x.  y
)  =  m ) )
44 eqid 2177 . . . . . . . . 9  |-  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 )
45 oveq2 5880 . . . . . . . . . . . 12  |-  ( n  =  y  ->  (
2  x.  n )  =  ( 2  x.  y ) )
4645oveq1d 5887 . . . . . . . . . . 11  |-  ( n  =  y  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4746eqeq1d 2186 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) ) )
4847rspcev 2841 . . . . . . . . 9  |-  ( ( y  e.  ZZ  /\  ( ( 2  x.  y )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 ) )
4944, 48mpan2 425 . . . . . . . 8  |-  ( y  e.  ZZ  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y
)  +  1 ) )
50 oveq1 5879 . . . . . . . . . 10  |-  ( ( 2  x.  y )  =  m  ->  (
( 2  x.  y
)  +  1 )  =  ( m  + 
1 ) )
5150eqeq2d 2189 . . . . . . . . 9  |-  ( ( 2  x.  y )  =  m  ->  (
( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  ( (
2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5251rexbidv 2478 . . . . . . . 8  |-  ( ( 2  x.  y )  =  m  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  y )  +  1 )  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5349, 52syl5ibcom 155 . . . . . . 7  |-  ( y  e.  ZZ  ->  (
( 2  x.  y
)  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5453adantl 277 . . . . . 6  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( 2  x.  y )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5543, 54sylbid 150 . . . . 5  |-  ( ( m  e.  NN0  /\  y  e.  ZZ )  ->  ( ( y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
5655rexlimdva 2594 . . . 4  |-  ( m  e.  NN0  ->  ( E. y  e.  ZZ  (
y  x.  2 )  =  m  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 ) ) )
57 peano2z 9285 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
x  +  1 )  e.  ZZ )
5857adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( x  +  1 )  e.  ZZ )
59 zcn 9254 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  x  e.  CC )
60 mulcom 7937 . . . . . . . . . . . . 13  |-  ( ( x  e.  CC  /\  2  e.  CC )  ->  ( x  x.  2 )  =  ( 2  x.  x ) )
6131, 60mpan2 425 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
x  x.  2 )  =  ( 2  x.  x ) )
6231mulid2i 7957 . . . . . . . . . . . . 13  |-  ( 1  x.  2 )  =  2
6362a1i 9 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
1  x.  2 )  =  2 )
6461, 63oveq12d 5890 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  2 ) )
65 df-2 8974 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
6665oveq2i 5883 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  +  2 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) )
6764, 66eqtrdi 2226 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  x.  2 )  +  ( 1  x.  2 ) )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
68 ax-1cn 7901 . . . . . . . . . . 11  |-  1  e.  CC
69 adddir 7945 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  1  e.  CC  /\  2  e.  CC )  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
7068, 31, 69mp3an23 1329 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( x  x.  2 )  +  ( 1  x.  2 ) ) )
71 mulcl 7935 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  x  e.  CC )  ->  ( 2  x.  x
)  e.  CC )
7231, 71mpan 424 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  (
2  x.  x )  e.  CC )
73 addass 7938 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  x
)  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7468, 68, 73mp3an23 1329 . . . . . . . . . . 11  |-  ( ( 2  x.  x )  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7572, 74syl 14 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( ( 2  x.  x )  +  ( 1  +  1 ) ) )
7667, 70, 753eqtr4d 2220 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7759, 76syl 14 . . . . . . . 8  |-  ( x  e.  ZZ  ->  (
( x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) )
7877adantl 277 . . . . . . 7  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
79 oveq1 5879 . . . . . . . . 9  |-  ( k  =  ( x  + 
1 )  ->  (
k  x.  2 )  =  ( ( x  +  1 )  x.  2 ) )
8079eqeq1d 2186 . . . . . . . 8  |-  ( k  =  ( x  + 
1 )  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( (
x  +  1 )  x.  2 )  =  ( ( ( 2  x.  x )  +  1 )  +  1 ) ) )
8180rspcev 2841 . . . . . . 7  |-  ( ( ( x  +  1 )  e.  ZZ  /\  ( ( x  + 
1 )  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
8258, 78, 81syl2anc 411 . . . . . 6  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 ) )
83 oveq1 5879 . . . . . . . 8  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( ( 2  x.  x )  +  1 )  +  1 )  =  ( m  + 
1 ) )
8483eqeq2d 2189 . . . . . . 7  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  (
( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  ( k  x.  2 )  =  ( m  +  1 ) ) )
8584rexbidv 2478 . . . . . 6  |-  ( ( ( 2  x.  x
)  +  1 )  =  m  ->  ( E. k  e.  ZZ  ( k  x.  2 )  =  ( ( ( 2  x.  x
)  +  1 )  +  1 )  <->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8682, 85syl5ibcom 155 . . . . 5  |-  ( ( m  e.  NN0  /\  x  e.  ZZ )  ->  ( ( ( 2  x.  x )  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8786rexlimdva 2594 . . . 4  |-  ( m  e.  NN0  ->  ( E. x  e.  ZZ  (
( 2  x.  x
)  +  1 )  =  m  ->  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) )
8856, 87orim12d 786 . . 3  |-  ( m  e.  NN0  ->  ( ( E. y  e.  ZZ  ( y  x.  2 )  =  m  \/ 
E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
8938, 88biimtrid 152 . 2  |-  ( m  e.  NN0  ->  ( ( E. x  e.  ZZ  ( ( 2  x.  x )  +  1 )  =  m  \/ 
E. y  e.  ZZ  ( y  x.  2 )  =  m )  ->  ( E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  ( m  +  1 )  \/  E. k  e.  ZZ  ( k  x.  2 )  =  ( m  +  1 ) ) ) )
905, 19, 24, 29, 37, 89nn0ind 9363 1  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  \/  E. k  e.  ZZ  (
k  x.  2 )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   E.wrex 2456  (class class class)co 5872   CCcc 7806   0cc0 7808   1c1 7809    + caddc 7811    x. cmul 7813   2c2 8966   NN0cn0 9172   ZZcz 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-2 8974  df-n0 9173  df-z 9250
This theorem is referenced by:  odd2np1  11870
  Copyright terms: Public domain W3C validator