ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2eximdv GIF version

Theorem 2eximdv 1875
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 3-Aug-1995.)
Hypothesis
Ref Expression
2alimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
2eximdv (𝜑 → (∃𝑥𝑦𝜓 → ∃𝑥𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem 2eximdv
StepHypRef Expression
1 2alimdv.1 . . 3 (𝜑 → (𝜓𝜒))
21eximdv 1873 . 2 (𝜑 → (∃𝑦𝜓 → ∃𝑦𝜒))
32eximdv 1873 1 (𝜑 → (∃𝑥𝑦𝜓 → ∃𝑥𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  cgsex2g  2766  cgsex4g  2767  spc2egv  2820  spc3egv  2822  relop  4761  elres  4927  opabbrex  5897  th3q  6618  addnnnq0  7411  mulnnnq0  7412  prmuloc  7528  addsrpr  7707  mulsrpr  7708
  Copyright terms: Public domain W3C validator