![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opabbrex | GIF version |
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.) |
Ref | Expression |
---|---|
opabbrex.1 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) |
opabbrex.2 | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) |
Ref | Expression |
---|---|
opabbrex | ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 4091 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ 𝜃} = {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃)} | |
2 | opabbrex.2 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ 𝜃} ∈ V) | |
3 | 1, 2 | eqeltrrid 2281 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃)} ∈ V) |
4 | df-opab 4091 | . . 3 ⊢ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} = {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓))} | |
5 | opabbrex.1 | . . . . . . 7 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝 → 𝜃)) | |
6 | 5 | adantrd 279 | . . . . . 6 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓) → 𝜃)) |
7 | 6 | anim2d 337 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑧 = 〈𝑓, 𝑝〉 ∧ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)) → (𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃))) |
8 | 7 | 2eximdv 1893 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)) → ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃))) |
9 | 8 | ss2abdv 3252 | . . 3 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓))} ⊆ {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃)}) |
10 | 4, 9 | eqsstrid 3225 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} ⊆ {𝑧 ∣ ∃𝑓∃𝑝(𝑧 = 〈𝑓, 𝑝〉 ∧ 𝜃)}) |
11 | 3, 10 | ssexd 4169 | 1 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {〈𝑓, 𝑝〉 ∣ (𝑓(𝑉𝑊𝐸)𝑝 ∧ 𝜓)} ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 {cab 2179 Vcvv 2760 〈cop 3621 class class class wbr 4029 {copab 4089 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-opab 4091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |