ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opabbrex GIF version

Theorem opabbrex 5932
Description: A collection of ordered pairs with an extension of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017.)
Hypotheses
Ref Expression
opabbrex.1 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
opabbrex.2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
Assertion
Ref Expression
opabbrex ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
Distinct variable groups:   𝑓,𝐸,𝑝   𝑓,𝑉,𝑝
Allowed substitution hints:   𝜓(𝑓,𝑝)   𝜃(𝑓,𝑝)   𝑊(𝑓,𝑝)

Proof of Theorem opabbrex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 4077 . . 3 {⟨𝑓, 𝑝⟩ ∣ 𝜃} = {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)}
2 opabbrex.2 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ 𝜃} ∈ V)
31, 2eqeltrrid 2275 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)} ∈ V)
4 df-opab 4077 . . 3 {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} = {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ (𝑓(𝑉𝑊𝐸)𝑝𝜓))}
5 opabbrex.1 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑓(𝑉𝑊𝐸)𝑝𝜃))
65adantrd 279 . . . . . 6 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑓(𝑉𝑊𝐸)𝑝𝜓) → 𝜃))
76anim2d 337 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑧 = ⟨𝑓, 𝑝⟩ ∧ (𝑓(𝑉𝑊𝐸)𝑝𝜓)) → (𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)))
872eximdv 1892 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ (𝑓(𝑉𝑊𝐸)𝑝𝜓)) → ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)))
98ss2abdv 3240 . . 3 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ (𝑓(𝑉𝑊𝐸)𝑝𝜓))} ⊆ {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)})
104, 9eqsstrid 3213 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ⊆ {𝑧 ∣ ∃𝑓𝑝(𝑧 = ⟨𝑓, 𝑝⟩ ∧ 𝜃)})
113, 10ssexd 4155 1 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑉𝑊𝐸)𝑝𝜓)} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wex 1502  wcel 2158  {cab 2173  Vcvv 2749  cop 3607   class class class wbr 4015  {copab 4075  (class class class)co 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-sep 4133
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-in 3147  df-ss 3154  df-opab 4077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator