ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cgsex2g GIF version

Theorem cgsex2g 2762
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cgsex2g.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)
cgsex2g.2 (𝜒 → (𝜑𝜓))
Assertion
Ref Expression
cgsex2g ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝜓   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem cgsex2g
StepHypRef Expression
1 cgsex2g.2 . . . 4 (𝜒 → (𝜑𝜓))
21biimpa 294 . . 3 ((𝜒𝜑) → 𝜓)
32exlimivv 1884 . 2 (∃𝑥𝑦(𝜒𝜑) → 𝜓)
4 elisset 2740 . . . . . 6 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
5 elisset 2740 . . . . . 6 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
64, 5anim12i 336 . . . . 5 ((𝐴𝑉𝐵𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
7 eeanv 1920 . . . . 5 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
86, 7sylibr 133 . . . 4 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
9 cgsex2g.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝜒)
1092eximi 1589 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦𝜒)
118, 10syl 14 . . 3 ((𝐴𝑉𝐵𝑊) → ∃𝑥𝑦𝜒)
121biimprcd 159 . . . . 5 (𝜓 → (𝜒𝜑))
1312ancld 323 . . . 4 (𝜓 → (𝜒 → (𝜒𝜑)))
14132eximdv 1870 . . 3 (𝜓 → (∃𝑥𝑦𝜒 → ∃𝑥𝑦(𝜒𝜑)))
1511, 14syl5com 29 . 2 ((𝐴𝑉𝐵𝑊) → (𝜓 → ∃𝑥𝑦(𝜒𝜑)))
163, 15impbid2 142 1 ((𝐴𝑉𝐵𝑊) → (∃𝑥𝑦(𝜒𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator