| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cgsex2g | GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| cgsex2g.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) |
| cgsex2g.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cgsex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgsex2g.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpa 296 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
| 3 | 2 | exlimivv 1921 | . 2 ⊢ (∃𝑥∃𝑦(𝜒 ∧ 𝜑) → 𝜓) |
| 4 | elisset 2791 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 5 | elisset 2791 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
| 6 | 4, 5 | anim12i 338 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
| 7 | eeanv 1961 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 8 | 6, 7 | sylibr 134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 9 | cgsex2g.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | |
| 10 | 9 | 2eximi 1625 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜒) |
| 11 | 8, 10 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦𝜒) |
| 12 | 1 | biimprcd 160 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
| 13 | 12 | ancld 325 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
| 14 | 13 | 2eximdv 1906 | . . 3 ⊢ (𝜓 → (∃𝑥∃𝑦𝜒 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) |
| 15 | 11, 14 | syl5com 29 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) |
| 16 | 3, 15 | impbid2 143 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |