| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cgsex2g | GIF version | ||
| Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| cgsex2g.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | 
| cgsex2g.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cgsex2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgsex2g.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpa 296 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) | 
| 3 | 2 | exlimivv 1911 | . 2 ⊢ (∃𝑥∃𝑦(𝜒 ∧ 𝜑) → 𝜓) | 
| 4 | elisset 2777 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 5 | elisset 2777 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | |
| 6 | 4, 5 | anim12i 338 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | 
| 7 | eeanv 1951 | . . . . 5 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | |
| 8 | 6, 7 | sylibr 134 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) | 
| 9 | cgsex2g.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜒) | |
| 10 | 9 | 2eximi 1615 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜒) | 
| 11 | 8, 10 | syl 14 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦𝜒) | 
| 12 | 1 | biimprcd 160 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) | 
| 13 | 12 | ancld 325 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) | 
| 14 | 13 | 2eximdv 1896 | . . 3 ⊢ (𝜓 → (∃𝑥∃𝑦𝜒 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) | 
| 15 | 11, 14 | syl5com 29 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝜓 → ∃𝑥∃𝑦(𝜒 ∧ 𝜑))) | 
| 16 | 3, 15 | impbid2 143 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥∃𝑦(𝜒 ∧ 𝜑) ↔ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |