ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun GIF version

Theorem 0iun 3999
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 3486 . . . 4 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 3945 . . . 4 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 673 . . 3 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
4 noel 3472 . . 3 ¬ 𝑦 ∈ ∅
53, 42false 703 . 2 (𝑦 𝑥 ∈ ∅ 𝐴𝑦 ∈ ∅)
65eqriv 2204 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  wrex 2487  c0 3468   ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-nul 3469  df-iun 3943
This theorem is referenced by:  iununir  4025  rdg0  6496  iunfidisj  7074  fsum2d  11861  fsumiun  11903  fprod2d  12049  iuncld  14702
  Copyright terms: Public domain W3C validator