ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun GIF version

Theorem 0iun 3836
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 3346 . . . 4 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 3783 . . . 4 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 643 . . 3 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
4 noel 3333 . . 3 ¬ 𝑦 ∈ ∅
53, 42false 673 . 2 (𝑦 𝑥 ∈ ∅ 𝐴𝑦 ∈ ∅)
65eqriv 2112 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1314  wcel 1463  wrex 2391  c0 3329   ciun 3779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-dif 3039  df-nul 3330  df-iun 3781
This theorem is referenced by:  iununir  3862  rdg0  6238  iunfidisj  6786  fsum2d  11096  fsumiun  11138  iuncld  12127
  Copyright terms: Public domain W3C validator