ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun GIF version

Theorem 0iun 3923
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 3426 . . . 4 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 3870 . . . 4 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 661 . . 3 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
4 noel 3413 . . 3 ¬ 𝑦 ∈ ∅
53, 42false 691 . 2 (𝑦 𝑥 ∈ ∅ 𝐴𝑦 ∈ ∅)
65eqriv 2162 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  wrex 2445  c0 3409   ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-nul 3410  df-iun 3868
This theorem is referenced by:  iununir  3949  rdg0  6355  iunfidisj  6911  fsum2d  11376  fsumiun  11418  fprod2d  11564  iuncld  12755
  Copyright terms: Public domain W3C validator