![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0iun | GIF version |
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
0iun | ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rex0 3346 | . . . 4 ⊢ ¬ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
2 | eliun 3783 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | |
3 | 1, 2 | mtbir 643 | . . 3 ⊢ ¬ 𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 |
4 | noel 3333 | . . 3 ⊢ ¬ 𝑦 ∈ ∅ | |
5 | 3, 4 | 2false 673 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ ∅ 𝐴 ↔ 𝑦 ∈ ∅) |
6 | 5 | eqriv 2112 | 1 ⊢ ∪ 𝑥 ∈ ∅ 𝐴 = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1314 ∈ wcel 1463 ∃wrex 2391 ∅c0 3329 ∪ ciun 3779 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-dif 3039 df-nul 3330 df-iun 3781 |
This theorem is referenced by: iununir 3862 rdg0 6238 iunfidisj 6786 fsum2d 11096 fsumiun 11138 iuncld 12127 |
Copyright terms: Public domain | W3C validator |