ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iun GIF version

Theorem 0iun 3930
Description: An empty indexed union is empty. (Contributed by NM, 4-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
0iun 𝑥 ∈ ∅ 𝐴 = ∅

Proof of Theorem 0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rex0 3432 . . . 4 ¬ ∃𝑥 ∈ ∅ 𝑦𝐴
2 eliun 3877 . . . 4 (𝑦 𝑥 ∈ ∅ 𝐴 ↔ ∃𝑥 ∈ ∅ 𝑦𝐴)
31, 2mtbir 666 . . 3 ¬ 𝑦 𝑥 ∈ ∅ 𝐴
4 noel 3418 . . 3 ¬ 𝑦 ∈ ∅
53, 42false 696 . 2 (𝑦 𝑥 ∈ ∅ 𝐴𝑦 ∈ ∅)
65eqriv 2167 1 𝑥 ∈ ∅ 𝐴 = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  wrex 2449  c0 3414   ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-nul 3415  df-iun 3875
This theorem is referenced by:  iununir  3956  rdg0  6366  iunfidisj  6923  fsum2d  11398  fsumiun  11440  fprod2d  11586  iuncld  12909
  Copyright terms: Public domain W3C validator