ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 697
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 614 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 614 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 128 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21ni  698  bianfd  943  abvor0dc  3438  nn0eln0  4604  nntri3  6476  fin0  6863  omp1eomlem  7071  ctssdccl  7088  ismkvnex  7131  xrlttri3  9754  nltpnft  9771  ngtmnft  9774  xrrebnd  9776  xltadd1  9833  xposdif  9839  xleaddadd  9844  hashnncl  10730  zfz1isolemiso  10774  mod2eq1n2dvds  11838  m1exp1  11860  pceq0  12275
  Copyright terms: Public domain W3C validator