| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | pm2.21d 622 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | pm2.21d 622 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 708 bianfd 954 abvor0dc 3515 nn0eln0 4709 nntri3 6633 fin0 7035 omp1eomlem 7249 ctssdccl 7266 ismkvnex 7310 xrlttri3 9981 nltpnft 9998 ngtmnft 10001 xrrebnd 10003 xltadd1 10060 xposdif 10066 xleaddadd 10071 xqltnle 10474 hashnncl 11004 zfz1isolemiso 11048 mod2eq1n2dvds 12376 m1exp1 12398 bitsmod 12453 pceq0 12831 2omap 16290 |
| Copyright terms: Public domain | W3C validator |