Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | pm2.21d 609 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | 3 | pm2.21d 609 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21ni 693 bianfd 938 abvor0dc 3432 nn0eln0 4597 nntri3 6465 fin0 6851 omp1eomlem 7059 ctssdccl 7076 ismkvnex 7119 xrlttri3 9733 nltpnft 9750 ngtmnft 9753 xrrebnd 9755 xltadd1 9812 xposdif 9818 xleaddadd 9823 hashnncl 10709 zfz1isolemiso 10752 mod2eq1n2dvds 11816 m1exp1 11838 pceq0 12253 |
Copyright terms: Public domain | W3C validator |