| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 705 bianfd 951 abvor0dc 3486 nn0eln0 4673 nntri3 6593 fin0 6994 omp1eomlem 7208 ctssdccl 7225 ismkvnex 7269 xrlttri3 9932 nltpnft 9949 ngtmnft 9952 xrrebnd 9954 xltadd1 10011 xposdif 10017 xleaddadd 10022 xqltnle 10423 hashnncl 10953 zfz1isolemiso 10997 mod2eq1n2dvds 12240 m1exp1 12262 bitsmod 12317 pceq0 12695 2omap 16047 |
| Copyright terms: Public domain | W3C validator |