ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 692
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 609 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 609 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 128 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21ni  693  bianfd  938  abvor0dc  3432  nn0eln0  4597  nntri3  6465  fin0  6851  omp1eomlem  7059  ctssdccl  7076  ismkvnex  7119  xrlttri3  9733  nltpnft  9750  ngtmnft  9753  xrrebnd  9755  xltadd1  9812  xposdif  9818  xleaddadd  9823  hashnncl  10709  zfz1isolemiso  10752  mod2eq1n2dvds  11816  m1exp1  11838  pceq0  12253
  Copyright terms: Public domain W3C validator