| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 704 bianfd 950 abvor0dc 3475 nn0eln0 4657 nntri3 6564 fin0 6955 omp1eomlem 7169 ctssdccl 7186 ismkvnex 7230 xrlttri3 9889 nltpnft 9906 ngtmnft 9909 xrrebnd 9911 xltadd1 9968 xposdif 9974 xleaddadd 9979 xqltnle 10374 hashnncl 10904 zfz1isolemiso 10948 mod2eq1n2dvds 12061 m1exp1 12083 bitsmod 12138 pceq0 12516 2omap 15726 |
| Copyright terms: Public domain | W3C validator |