Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | pm2.21d 614 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | 3 | pm2.21d 614 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.21ni 698 bianfd 943 abvor0dc 3437 nn0eln0 4602 nntri3 6473 fin0 6859 omp1eomlem 7067 ctssdccl 7084 ismkvnex 7127 xrlttri3 9741 nltpnft 9758 ngtmnft 9761 xrrebnd 9763 xltadd1 9820 xposdif 9826 xleaddadd 9831 hashnncl 10717 zfz1isolemiso 10761 mod2eq1n2dvds 11825 m1exp1 11847 pceq0 12262 |
Copyright terms: Public domain | W3C validator |