ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 707
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 622 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 622 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 129 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21ni  708  bianfd  954  abvor0dc  3515  nn0eln0  4709  nntri3  6633  fin0  7035  omp1eomlem  7249  ctssdccl  7266  ismkvnex  7310  xrlttri3  9981  nltpnft  9998  ngtmnft  10001  xrrebnd  10003  xltadd1  10060  xposdif  10066  xleaddadd  10071  xqltnle  10474  hashnncl  11004  zfz1isolemiso  11048  mod2eq1n2dvds  12376  m1exp1  12398  bitsmod  12453  pceq0  12831  2omap  16290
  Copyright terms: Public domain W3C validator