ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 707
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 622 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 622 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 129 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21ni  708  bianfd  954  abvor0dc  3515  nn0eln0  4712  nntri3  6651  fin0  7055  omp1eomlem  7269  ctssdccl  7286  ismkvnex  7330  xrlttri3  10001  nltpnft  10018  ngtmnft  10021  xrrebnd  10023  xltadd1  10080  xposdif  10086  xleaddadd  10091  xqltnle  10495  hashnncl  11025  zfz1isolemiso  11069  mod2eq1n2dvds  12398  m1exp1  12420  bitsmod  12475  pceq0  12853  2omap  16388
  Copyright terms: Public domain W3C validator