![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version |
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
2 | 1 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
4 | 3 | pm2.21d 620 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.21ni 704 bianfd 950 abvor0dc 3470 nn0eln0 4652 nntri3 6550 fin0 6941 omp1eomlem 7153 ctssdccl 7170 ismkvnex 7214 xrlttri3 9863 nltpnft 9880 ngtmnft 9883 xrrebnd 9885 xltadd1 9942 xposdif 9948 xleaddadd 9953 xqltnle 10336 hashnncl 10866 zfz1isolemiso 10910 mod2eq1n2dvds 12020 m1exp1 12042 pceq0 12460 |
Copyright terms: Public domain | W3C validator |