ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 659
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 589 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 589 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 128 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 106  ax-ia3 107  ax-in2 585
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21ni  660  bianfd  900  abvor0dc  3333  nn0eln0  4471  nntri3  6323  fin0  6708  omp1eomlem  6894  ctssdclemr  6911  xrlttri3  9424  nltpnft  9438  ngtmnft  9441  xrrebnd  9443  xltadd1  9500  xposdif  9506  xleaddadd  9511  hashnncl  10383  zfz1isolemiso  10423  mod2eq1n2dvds  11371  m1exp1  11393
  Copyright terms: Public domain W3C validator