| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2falsed | GIF version | ||
| Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| 2falsed.1 | ⊢ (𝜑 → ¬ 𝜓) |
| 2falsed.2 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| 2falsed | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2falsed.1 | . . 3 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | 1 | pm2.21d 622 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | 2falsed.2 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
| 4 | 3 | pm2.21d 622 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 5 | 2, 4 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21ni 708 bianfd 954 abvor0dc 3515 nn0eln0 4712 nntri3 6651 fin0 7055 omp1eomlem 7269 ctssdccl 7286 ismkvnex 7330 xrlttri3 10001 nltpnft 10018 ngtmnft 10021 xrrebnd 10023 xltadd1 10080 xposdif 10086 xleaddadd 10091 xqltnle 10495 hashnncl 11025 zfz1isolemiso 11069 mod2eq1n2dvds 12398 m1exp1 12420 bitsmod 12475 pceq0 12853 2omap 16388 |
| Copyright terms: Public domain | W3C validator |