ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 703
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 620 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 620 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 129 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-in2 616
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21ni  704  bianfd  950  abvor0dc  3475  nn0eln0  4657  nntri3  6564  fin0  6955  omp1eomlem  7169  ctssdccl  7186  ismkvnex  7230  xrlttri3  9891  nltpnft  9908  ngtmnft  9911  xrrebnd  9913  xltadd1  9970  xposdif  9976  xleaddadd  9981  xqltnle  10376  hashnncl  10906  zfz1isolemiso  10950  mod2eq1n2dvds  12063  m1exp1  12085  bitsmod  12140  pceq0  12518  2omap  15750
  Copyright terms: Public domain W3C validator