ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 697
Description: Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (𝜑 → ¬ 𝜓)
2falsed.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
2falsed (𝜑 → (𝜓𝜒))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (𝜑 → ¬ 𝜓)
21pm2.21d 614 . 2 (𝜑 → (𝜓𝜒))
3 2falsed.2 . . 3 (𝜑 → ¬ 𝜒)
43pm2.21d 614 . 2 (𝜑 → (𝜒𝜓))
52, 4impbid 128 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-in2 610
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21ni  698  bianfd  943  abvor0dc  3437  nn0eln0  4602  nntri3  6473  fin0  6859  omp1eomlem  7067  ctssdccl  7084  ismkvnex  7127  xrlttri3  9741  nltpnft  9758  ngtmnft  9761  xrrebnd  9763  xltadd1  9820  xposdif  9826  xleaddadd  9831  hashnncl  10717  zfz1isolemiso  10761  mod2eq1n2dvds  11825  m1exp1  11847  pceq0  12262
  Copyright terms: Public domain W3C validator