ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0er GIF version

Theorem 0er 6621
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4784 . . . 4 Rel ∅
21a1i 9 . . 3 (⊤ → Rel ∅)
3 df-br 4030 . . . . 5 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
4 noel 3450 . . . . . 6 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
54pm2.21i 647 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
63, 5sylbi 121 . . . 4 (𝑥𝑦𝑦𝑥)
76adantl 277 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
84pm2.21i 647 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
93, 8sylbi 121 . . . 4 (𝑥𝑦𝑥𝑧)
109ad2antrl 490 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
11 noel 3450 . . . . . 6 ¬ 𝑥 ∈ ∅
12 noel 3450 . . . . . 6 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
1311, 122false 702 . . . . 5 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
14 df-br 4030 . . . . 5 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1513, 14bitr4i 187 . . . 4 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
1615a1i 9 . . 3 (⊤ → (𝑥 ∈ ∅ ↔ 𝑥𝑥))
172, 7, 10, 16iserd 6613 . 2 (⊤ → ∅ Er ∅)
1817mptru 1373 1 ∅ Er ∅
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1365  wcel 2164  c0 3446  cop 3621   class class class wbr 4029  Rel wrel 4664   Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-er 6587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator