ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0er GIF version

Theorem 0er 6463
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4664 . . . 4 Rel ∅
21a1i 9 . . 3 (⊤ → Rel ∅)
3 df-br 3930 . . . . 5 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
4 noel 3367 . . . . . 6 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
54pm2.21i 635 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
63, 5sylbi 120 . . . 4 (𝑥𝑦𝑦𝑥)
76adantl 275 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
84pm2.21i 635 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
93, 8sylbi 120 . . . 4 (𝑥𝑦𝑥𝑧)
109ad2antrl 481 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
11 noel 3367 . . . . . 6 ¬ 𝑥 ∈ ∅
12 noel 3367 . . . . . 6 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
1311, 122false 690 . . . . 5 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
14 df-br 3930 . . . . 5 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1513, 14bitr4i 186 . . . 4 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
1615a1i 9 . . 3 (⊤ → (𝑥 ∈ ∅ ↔ 𝑥𝑥))
172, 7, 10, 16iserd 6455 . 2 (⊤ → ∅ Er ∅)
1817mptru 1340 1 ∅ Er ∅
Colors of variables: wff set class
Syntax hints:  wb 104  wtru 1332  wcel 1480  c0 3363  cop 3530   class class class wbr 3929  Rel wrel 4544   Er wer 6426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-er 6429
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator