ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0er GIF version

Theorem 0er 6704
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4841 . . . 4 Rel ∅
21a1i 9 . . 3 (⊤ → Rel ∅)
3 df-br 4083 . . . . 5 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
4 noel 3495 . . . . . 6 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
54pm2.21i 649 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
63, 5sylbi 121 . . . 4 (𝑥𝑦𝑦𝑥)
76adantl 277 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
84pm2.21i 649 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
93, 8sylbi 121 . . . 4 (𝑥𝑦𝑥𝑧)
109ad2antrl 490 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
11 noel 3495 . . . . . 6 ¬ 𝑥 ∈ ∅
12 noel 3495 . . . . . 6 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
1311, 122false 706 . . . . 5 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
14 df-br 4083 . . . . 5 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1513, 14bitr4i 187 . . . 4 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
1615a1i 9 . . 3 (⊤ → (𝑥 ∈ ∅ ↔ 𝑥𝑥))
172, 7, 10, 16iserd 6696 . 2 (⊤ → ∅ Er ∅)
1817mptru 1404 1 ∅ Er ∅
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1396  wcel 2200  c0 3491  cop 3669   class class class wbr 4082  Rel wrel 4721   Er wer 6667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-er 6670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator