![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 0er | GIF version |
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
Ref | Expression |
---|---|
0er | ⊢ ∅ Er ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rel0 4602 | . . . 4 ⊢ Rel ∅ | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Rel ∅) |
3 | df-br 3876 | . . . . 5 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
4 | noel 3314 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
5 | 4 | pm2.21i 615 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
6 | 3, 5 | sylbi 120 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
7 | 6 | adantl 273 | . . 3 ⊢ ((⊤ ∧ 𝑥∅𝑦) → 𝑦∅𝑥) |
8 | 4 | pm2.21i 615 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
9 | 3, 8 | sylbi 120 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
10 | 9 | ad2antrl 477 | . . 3 ⊢ ((⊤ ∧ (𝑥∅𝑦 ∧ 𝑦∅𝑧)) → 𝑥∅𝑧) |
11 | noel 3314 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
12 | noel 3314 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
13 | 11, 12 | 2false 658 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
14 | df-br 3876 | . . . . 5 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
15 | 13, 14 | bitr4i 186 | . . . 4 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
16 | 15 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ ∅ ↔ 𝑥∅𝑥)) |
17 | 2, 7, 10, 16 | iserd 6385 | . 2 ⊢ (⊤ → ∅ Er ∅) |
18 | 17 | mptru 1308 | 1 ⊢ ∅ Er ∅ |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ⊤wtru 1300 ∈ wcel 1448 ∅c0 3310 〈cop 3477 class class class wbr 3875 Rel wrel 4482 Er wer 6356 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-er 6359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |