ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0er GIF version

Theorem 0er 6635
Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
0er ∅ Er ∅

Proof of Theorem 0er
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 4789 . . . 4 Rel ∅
21a1i 9 . . 3 (⊤ → Rel ∅)
3 df-br 4035 . . . . 5 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
4 noel 3455 . . . . . 6 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
54pm2.21i 647 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑦𝑥)
63, 5sylbi 121 . . . 4 (𝑥𝑦𝑦𝑥)
76adantl 277 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
84pm2.21i 647 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ∅ → 𝑥𝑧)
93, 8sylbi 121 . . . 4 (𝑥𝑦𝑥𝑧)
109ad2antrl 490 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
11 noel 3455 . . . . . 6 ¬ 𝑥 ∈ ∅
12 noel 3455 . . . . . 6 ¬ ⟨𝑥, 𝑥⟩ ∈ ∅
1311, 122false 702 . . . . 5 (𝑥 ∈ ∅ ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
14 df-br 4035 . . . . 5 (𝑥𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ ∅)
1513, 14bitr4i 187 . . . 4 (𝑥 ∈ ∅ ↔ 𝑥𝑥)
1615a1i 9 . . 3 (⊤ → (𝑥 ∈ ∅ ↔ 𝑥𝑥))
172, 7, 10, 16iserd 6627 . 2 (⊤ → ∅ Er ∅)
1817mptru 1373 1 ∅ Er ∅
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1365  wcel 2167  c0 3451  cop 3626   class class class wbr 4034  Rel wrel 4669   Er wer 6598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-er 6601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator