| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0er | GIF version | ||
| Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0er | ⊢ ∅ Er ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4789 | . . . 4 ⊢ Rel ∅ | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Rel ∅) |
| 3 | df-br 4035 | . . . . 5 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
| 4 | noel 3455 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 5 | 4 | pm2.21i 647 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
| 6 | 3, 5 | sylbi 121 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥∅𝑦) → 𝑦∅𝑥) |
| 8 | 4 | pm2.21i 647 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
| 9 | 3, 8 | sylbi 121 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
| 10 | 9 | ad2antrl 490 | . . 3 ⊢ ((⊤ ∧ (𝑥∅𝑦 ∧ 𝑦∅𝑧)) → 𝑥∅𝑧) |
| 11 | noel 3455 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 12 | noel 3455 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
| 13 | 11, 12 | 2false 702 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
| 14 | df-br 4035 | . . . . 5 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
| 15 | 13, 14 | bitr4i 187 | . . . 4 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
| 16 | 15 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ ∅ ↔ 𝑥∅𝑥)) |
| 17 | 2, 7, 10, 16 | iserd 6627 | . 2 ⊢ (⊤ → ∅ Er ∅) |
| 18 | 17 | mptru 1373 | 1 ⊢ ∅ Er ∅ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1365 ∈ wcel 2167 ∅c0 3451 〈cop 3626 class class class wbr 4034 Rel wrel 4669 Er wer 6598 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-er 6601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |