| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0er | GIF version | ||
| Description: The empty set is an equivalence relation on the empty set. (Contributed by Mario Carneiro, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0er | ⊢ ∅ Er ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 4805 | . . . 4 ⊢ Rel ∅ | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Rel ∅) |
| 3 | df-br 4049 | . . . . 5 ⊢ (𝑥∅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∅) | |
| 4 | noel 3466 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 5 | 4 | pm2.21i 647 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑦∅𝑥) |
| 6 | 3, 5 | sylbi 121 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑦∅𝑥) |
| 7 | 6 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥∅𝑦) → 𝑦∅𝑥) |
| 8 | 4 | pm2.21i 647 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ → 𝑥∅𝑧) |
| 9 | 3, 8 | sylbi 121 | . . . 4 ⊢ (𝑥∅𝑦 → 𝑥∅𝑧) |
| 10 | 9 | ad2antrl 490 | . . 3 ⊢ ((⊤ ∧ (𝑥∅𝑦 ∧ 𝑦∅𝑧)) → 𝑥∅𝑧) |
| 11 | noel 3466 | . . . . . 6 ⊢ ¬ 𝑥 ∈ ∅ | |
| 12 | noel 3466 | . . . . . 6 ⊢ ¬ 〈𝑥, 𝑥〉 ∈ ∅ | |
| 13 | 11, 12 | 2false 703 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↔ 〈𝑥, 𝑥〉 ∈ ∅) |
| 14 | df-br 4049 | . . . . 5 ⊢ (𝑥∅𝑥 ↔ 〈𝑥, 𝑥〉 ∈ ∅) | |
| 15 | 13, 14 | bitr4i 187 | . . . 4 ⊢ (𝑥 ∈ ∅ ↔ 𝑥∅𝑥) |
| 16 | 15 | a1i 9 | . . 3 ⊢ (⊤ → (𝑥 ∈ ∅ ↔ 𝑥∅𝑥)) |
| 17 | 2, 7, 10, 16 | iserd 6656 | . 2 ⊢ (⊤ → ∅ Er ∅) |
| 18 | 17 | mptru 1382 | 1 ⊢ ∅ Er ∅ |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1374 ∈ wcel 2177 ∅c0 3462 〈cop 3638 class class class wbr 4048 Rel wrel 4685 Er wer 6627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-er 6630 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |