| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnv0 | GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5060 | . 2 ⊢ Rel ◡∅ | |
| 2 | rel0 4800 | . 2 ⊢ Rel ∅ | |
| 3 | vex 2775 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | vex 2775 | . . . 4 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelcnv 4860 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
| 6 | noel 3464 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 7 | noel 3464 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
| 8 | 6, 7 | 2false 703 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
| 9 | 5, 8 | bitr4i 187 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 10 | 1, 2, 9 | eqrelriiv 4769 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 ∅c0 3460 〈cop 3636 ◡ccnv 4674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 |
| This theorem is referenced by: xp0 5102 cnveq0 5139 co01 5197 f10 5556 f1o00 5557 tpos0 6360 |
| Copyright terms: Public domain | W3C validator |