![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnv0 | GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5008 | . 2 ⊢ Rel ◡∅ | |
2 | rel0 4753 | . 2 ⊢ Rel ∅ | |
3 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 2742 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 4811 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅) |
6 | noel 3428 | . . . 4 ⊢ ¬ ⟨𝑥, 𝑦⟩ ∈ ∅ | |
7 | noel 3428 | . . . 4 ⊢ ¬ ⟨𝑦, 𝑥⟩ ∈ ∅ | |
8 | 6, 7 | 2false 701 | . . 3 ⊢ (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅) |
9 | 5, 8 | bitr4i 187 | . 2 ⊢ (⟨𝑥, 𝑦⟩ ∈ ◡∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅) |
10 | 1, 2, 9 | eqrelriiv 4722 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∅c0 3424 ⟨cop 3597 ◡ccnv 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 |
This theorem is referenced by: xp0 5050 cnveq0 5087 co01 5145 f10 5497 f1o00 5498 tpos0 6277 |
Copyright terms: Public domain | W3C validator |