![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnv0 | GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5043 | . 2 ⊢ Rel ◡∅ | |
2 | rel0 4784 | . 2 ⊢ Rel ∅ | |
3 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 2763 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 4844 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
6 | noel 3450 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
7 | noel 3450 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
8 | 6, 7 | 2false 702 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
9 | 5, 8 | bitr4i 187 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
10 | 1, 2, 9 | eqrelriiv 4753 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 ∅c0 3446 〈cop 3621 ◡ccnv 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 |
This theorem is referenced by: xp0 5085 cnveq0 5122 co01 5180 f10 5534 f1o00 5535 tpos0 6327 |
Copyright terms: Public domain | W3C validator |