ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 GIF version

Theorem cnv0 5069
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5043 . 2 Rel
2 rel0 4784 . 2 Rel ∅
3 vex 2763 . . . 4 𝑥 ∈ V
4 vex 2763 . . . 4 𝑦 ∈ V
53, 4opelcnv 4844 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
6 noel 3450 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
7 noel 3450 . . . 4 ¬ ⟨𝑦, 𝑥⟩ ∈ ∅
86, 72false 702 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
95, 8bitr4i 187 . 2 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
101, 2, 9eqrelriiv 4753 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  c0 3446  cop 3621  ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  xp0  5085  cnveq0  5122  co01  5180  f10  5534  f1o00  5535  tpos0  6327
  Copyright terms: Public domain W3C validator