Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnv0 | GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . 2 ⊢ Rel ◡∅ | |
2 | rel0 4736 | . 2 ⊢ Rel ∅ | |
3 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | vex 2733 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 3, 4 | opelcnv 4793 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
6 | noel 3418 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
7 | noel 3418 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
8 | 6, 7 | 2false 696 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
9 | 5, 8 | bitr4i 186 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
10 | 1, 2, 9 | eqrelriiv 4705 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 ∅c0 3414 〈cop 3586 ◡ccnv 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: xp0 5030 cnveq0 5067 co01 5125 f10 5476 f1o00 5477 tpos0 6253 |
Copyright terms: Public domain | W3C validator |