ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 GIF version

Theorem cnv0 5007
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4982 . 2 Rel
2 rel0 4729 . 2 Rel ∅
3 vex 2729 . . . 4 𝑥 ∈ V
4 vex 2729 . . . 4 𝑦 ∈ V
53, 4opelcnv 4786 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
6 noel 3413 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
7 noel 3413 . . . 4 ¬ ⟨𝑦, 𝑥⟩ ∈ ∅
86, 72false 691 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
95, 8bitr4i 186 . 2 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
101, 2, 9eqrelriiv 4698 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  c0 3409  cop 3579  ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  xp0  5023  cnveq0  5060  co01  5118  f10  5466  f1o00  5467  tpos0  6242
  Copyright terms: Public domain W3C validator