ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 GIF version

Theorem cnv0 5086
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5060 . 2 Rel
2 rel0 4800 . 2 Rel ∅
3 vex 2775 . . . 4 𝑥 ∈ V
4 vex 2775 . . . 4 𝑦 ∈ V
53, 4opelcnv 4860 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
6 noel 3464 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
7 noel 3464 . . . 4 ¬ ⟨𝑦, 𝑥⟩ ∈ ∅
86, 72false 703 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
95, 8bitr4i 187 . 2 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
101, 2, 9eqrelriiv 4769 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  c0 3460  cop 3636  ccnv 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683
This theorem is referenced by:  xp0  5102  cnveq0  5139  co01  5197  f10  5556  f1o00  5557  tpos0  6360
  Copyright terms: Public domain W3C validator