ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnv0 GIF version

Theorem cnv0 5105
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5079 . 2 Rel
2 rel0 4818 . 2 Rel ∅
3 vex 2779 . . . 4 𝑥 ∈ V
4 vex 2779 . . . 4 𝑦 ∈ V
53, 4opelcnv 4878 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
6 noel 3472 . . . 4 ¬ ⟨𝑥, 𝑦⟩ ∈ ∅
7 noel 3472 . . . 4 ¬ ⟨𝑦, 𝑥⟩ ∈ ∅
86, 72false 703 . . 3 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑦, 𝑥⟩ ∈ ∅)
95, 8bitr4i 187 . 2 (⟨𝑥, 𝑦⟩ ∈ ∅ ↔ ⟨𝑥, 𝑦⟩ ∈ ∅)
101, 2, 9eqrelriiv 4787 1 ∅ = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  c0 3468  cop 3646  ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  xp0  5121  cnveq0  5158  co01  5216  f10  5578  f1o00  5580  tpos0  6383
  Copyright terms: Public domain W3C validator