| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnv0 | GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5047 | . 2 ⊢ Rel ◡∅ | |
| 2 | rel0 4788 | . 2 ⊢ Rel ∅ | |
| 3 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 5 | 3, 4 | opelcnv 4848 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
| 6 | noel 3454 | . . . 4 ⊢ ¬ 〈𝑥, 𝑦〉 ∈ ∅ | |
| 7 | noel 3454 | . . . 4 ⊢ ¬ 〈𝑦, 𝑥〉 ∈ ∅ | |
| 8 | 6, 7 | 2false 702 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ∅ ↔ 〈𝑦, 𝑥〉 ∈ ∅) |
| 9 | 5, 8 | bitr4i 187 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡∅ ↔ 〈𝑥, 𝑦〉 ∈ ∅) |
| 10 | 1, 2, 9 | eqrelriiv 4757 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∅c0 3450 〈cop 3625 ◡ccnv 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 |
| This theorem is referenced by: xp0 5089 cnveq0 5126 co01 5184 f10 5538 f1o00 5539 tpos0 6332 |
| Copyright terms: Public domain | W3C validator |