ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0ass GIF version

Theorem mulgnn0ass 12869
Description: Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnn0ass ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 12679 . . . . . . . 8 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 274 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32adantr 274 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝐺 ∈ Smgrp)
4 simprl 527 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑀 ∈ ℕ)
5 simprr 528 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
6 simpr3 1001 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76adantr 274 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑋𝐵)
8 mulgass.b . . . . . . 7 𝐵 = (Base‘𝐺)
9 mulgass.t . . . . . . 7 · = (.g𝐺)
108, 9mulgnnass 12868 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
113, 4, 5, 7, 10syl13anc 1236 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1211expr 373 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
13 eqid 2171 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
148, 13, 9mulg0 12839 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
156, 14syl 14 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑋) = (0g𝐺))
16 simpr1 999 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1716nn0cnd 9194 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℂ)
1817mul01d 8316 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · 0) = 0)
1918oveq1d 5872 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (0 · 𝑋))
2015oveq2d 5873 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (𝑀 · (0g𝐺)))
218, 9, 13mulgnn0z 12860 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
22213ad2antr1 1158 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0g𝐺)) = (0g𝐺))
2320, 22eqtrd 2204 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (0g𝐺))
2415, 19, 233eqtr4d 2214 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
2524adantr 274 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
26 oveq2 5865 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
2726oveq1d 5872 . . . . . 6 (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((𝑀 · 0) · 𝑋))
28 oveq1 5864 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2928oveq2d 5873 . . . . . 6 (𝑁 = 0 → (𝑀 · (𝑁 · 𝑋)) = (𝑀 · (0 · 𝑋)))
3027, 29eqeq12d 2186 . . . . 5 (𝑁 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))))
3125, 30syl5ibrcom 156 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
32 simpr2 1000 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
33 elnn0 9141 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3432, 33sylib 121 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3534adantr 274 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3612, 31, 35mpjaod 714 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
3736ex 114 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
3832nn0cnd 9194 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℂ)
3938mul02d 8315 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑁) = 0)
4039oveq1d 5872 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · 𝑋))
418, 9mulgnn0cl 12850 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
42413adant3r1 1208 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
438, 13, 9mulg0 12839 . . . . 5 ((𝑁 · 𝑋) ∈ 𝐵 → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4442, 43syl 14 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4515, 40, 443eqtr4d 2214 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋)))
46 oveq1 5864 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
4746oveq1d 5872 . . . 4 (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((0 · 𝑁) · 𝑋))
48 oveq1 5864 . . . 4 (𝑀 = 0 → (𝑀 · (𝑁 · 𝑋)) = (0 · (𝑁 · 𝑋)))
4947, 48eqeq12d 2186 . . 3 (𝑀 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋))))
5045, 49syl5ibrcom 156 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
51 elnn0 9141 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5216, 51sylib 121 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5337, 50, 52mpjaod 714 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 704  w3a 974   = wceq 1349  wcel 2142  cfv 5200  (class class class)co 5857  0cc0 7778   · cmul 7783  cn 8882  0cn0 9139  Basecbs 12420  0gc0g 12618  Smgrpcsgrp 12664  Mndcmnd 12674  .gcmg 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-ltadd 7894
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-inn 8883  df-2 8941  df-n0 9140  df-z 9217  df-uz 9492  df-fz 9970  df-fzo 10103  df-seqfrec 10406  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-mgm 12632  df-sgrp 12665  df-mnd 12675  df-minusg 12734  df-mulg 12835
This theorem is referenced by:  mulgass  12870
  Copyright terms: Public domain W3C validator