ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgnn0ass GIF version

Theorem mulgnn0ass 13024
Description: Product of group multiples, generalized to โ„•0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b ๐ต = (Baseโ€˜๐บ)
mulgass.t ยท = (.gโ€˜๐บ)
Assertion
Ref Expression
mulgnn0ass ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)))

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 12827 . . . . . . . 8 (๐บ โˆˆ Mnd โ†’ ๐บ โˆˆ Smgrp)
21adantr 276 . . . . . . 7 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐บ โˆˆ Smgrp)
32adantr 276 . . . . . 6 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•)) โ†’ ๐บ โˆˆ Smgrp)
4 simprl 529 . . . . . 6 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•)) โ†’ ๐‘€ โˆˆ โ„•)
5 simprr 531 . . . . . 6 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•)) โ†’ ๐‘ โˆˆ โ„•)
6 simpr3 1005 . . . . . . 7 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘‹ โˆˆ ๐ต)
76adantr 276 . . . . . 6 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•)) โ†’ ๐‘‹ โˆˆ ๐ต)
8 mulgass.b . . . . . . 7 ๐ต = (Baseโ€˜๐บ)
9 mulgass.t . . . . . . 7 ยท = (.gโ€˜๐บ)
108, 9mulgnnass 13023 . . . . . 6 ((๐บ โˆˆ Smgrp โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„• โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)))
113, 4, 5, 7, 10syl13anc 1240 . . . . 5 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง (๐‘€ โˆˆ โ„• โˆง ๐‘ โˆˆ โ„•)) โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)))
1211expr 375 . . . 4 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘ โˆˆ โ„• โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹))))
13 eqid 2177 . . . . . . . . 9 (0gโ€˜๐บ) = (0gโ€˜๐บ)
148, 13, 9mulg0 12993 . . . . . . . 8 (๐‘‹ โˆˆ ๐ต โ†’ (0 ยท ๐‘‹) = (0gโ€˜๐บ))
156, 14syl 14 . . . . . . 7 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (0 ยท ๐‘‹) = (0gโ€˜๐บ))
16 simpr1 1003 . . . . . . . . . 10 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘€ โˆˆ โ„•0)
1716nn0cnd 9233 . . . . . . . . 9 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘€ โˆˆ โ„‚)
1817mul01d 8352 . . . . . . . 8 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ ยท 0) = 0)
1918oveq1d 5892 . . . . . . 7 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ ยท 0) ยท ๐‘‹) = (0 ยท ๐‘‹))
2015oveq2d 5893 . . . . . . . 8 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ ยท (0 ยท ๐‘‹)) = (๐‘€ ยท (0gโ€˜๐บ)))
218, 9, 13mulgnn0z 13015 . . . . . . . . 9 ((๐บ โˆˆ Mnd โˆง ๐‘€ โˆˆ โ„•0) โ†’ (๐‘€ ยท (0gโ€˜๐บ)) = (0gโ€˜๐บ))
22213ad2antr1 1162 . . . . . . . 8 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ ยท (0gโ€˜๐บ)) = (0gโ€˜๐บ))
2320, 22eqtrd 2210 . . . . . . 7 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ ยท (0 ยท ๐‘‹)) = (0gโ€˜๐บ))
2415, 19, 233eqtr4d 2220 . . . . . 6 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ ยท 0) ยท ๐‘‹) = (๐‘€ ยท (0 ยท ๐‘‹)))
2524adantr 276 . . . . 5 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐‘€ ยท 0) ยท ๐‘‹) = (๐‘€ ยท (0 ยท ๐‘‹)))
26 oveq2 5885 . . . . . . 7 (๐‘ = 0 โ†’ (๐‘€ ยท ๐‘) = (๐‘€ ยท 0))
2726oveq1d 5892 . . . . . 6 (๐‘ = 0 โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = ((๐‘€ ยท 0) ยท ๐‘‹))
28 oveq1 5884 . . . . . . 7 (๐‘ = 0 โ†’ (๐‘ ยท ๐‘‹) = (0 ยท ๐‘‹))
2928oveq2d 5893 . . . . . 6 (๐‘ = 0 โ†’ (๐‘€ ยท (๐‘ ยท ๐‘‹)) = (๐‘€ ยท (0 ยท ๐‘‹)))
3027, 29eqeq12d 2192 . . . . 5 (๐‘ = 0 โ†’ (((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)) โ†” ((๐‘€ ยท 0) ยท ๐‘‹) = (๐‘€ ยท (0 ยท ๐‘‹))))
3125, 30syl5ibrcom 157 . . . 4 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘ = 0 โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹))))
32 simpr2 1004 . . . . . 6 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘ โˆˆ โ„•0)
33 elnn0 9180 . . . . . 6 (๐‘ โˆˆ โ„•0 โ†” (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
3432, 33sylib 122 . . . . 5 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
3534adantr 276 . . . 4 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง ๐‘€ โˆˆ โ„•) โ†’ (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
3612, 31, 35mpjaod 718 . . 3 (((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โˆง ๐‘€ โˆˆ โ„•) โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)))
3736ex 115 . 2 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ โˆˆ โ„• โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹))))
3832nn0cnd 9233 . . . . . 6 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ๐‘ โˆˆ โ„‚)
3938mul02d 8351 . . . . 5 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (0 ยท ๐‘) = 0)
4039oveq1d 5892 . . . 4 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((0 ยท ๐‘) ยท ๐‘‹) = (0 ยท ๐‘‹))
418, 9mulgnn0cl 13004 . . . . . 6 ((๐บ โˆˆ Mnd โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต) โ†’ (๐‘ ยท ๐‘‹) โˆˆ ๐ต)
42413adant3r1 1212 . . . . 5 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘ ยท ๐‘‹) โˆˆ ๐ต)
438, 13, 9mulg0 12993 . . . . 5 ((๐‘ ยท ๐‘‹) โˆˆ ๐ต โ†’ (0 ยท (๐‘ ยท ๐‘‹)) = (0gโ€˜๐บ))
4442, 43syl 14 . . . 4 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (0 ยท (๐‘ ยท ๐‘‹)) = (0gโ€˜๐บ))
4515, 40, 443eqtr4d 2220 . . 3 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((0 ยท ๐‘) ยท ๐‘‹) = (0 ยท (๐‘ ยท ๐‘‹)))
46 oveq1 5884 . . . . 5 (๐‘€ = 0 โ†’ (๐‘€ ยท ๐‘) = (0 ยท ๐‘))
4746oveq1d 5892 . . . 4 (๐‘€ = 0 โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = ((0 ยท ๐‘) ยท ๐‘‹))
48 oveq1 5884 . . . 4 (๐‘€ = 0 โ†’ (๐‘€ ยท (๐‘ ยท ๐‘‹)) = (0 ยท (๐‘ ยท ๐‘‹)))
4947, 48eqeq12d 2192 . . 3 (๐‘€ = 0 โ†’ (((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)) โ†” ((0 ยท ๐‘) ยท ๐‘‹) = (0 ยท (๐‘ ยท ๐‘‹))))
5045, 49syl5ibrcom 157 . 2 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ = 0 โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹))))
51 elnn0 9180 . . 3 (๐‘€ โˆˆ โ„•0 โ†” (๐‘€ โˆˆ โ„• โˆจ ๐‘€ = 0))
5216, 51sylib 122 . 2 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ (๐‘€ โˆˆ โ„• โˆจ ๐‘€ = 0))
5337, 50, 52mpjaod 718 1 ((๐บ โˆˆ Mnd โˆง (๐‘€ โˆˆ โ„•0 โˆง ๐‘ โˆˆ โ„•0 โˆง ๐‘‹ โˆˆ ๐ต)) โ†’ ((๐‘€ ยท ๐‘) ยท ๐‘‹) = (๐‘€ ยท (๐‘ ยท ๐‘‹)))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 708   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148  โ€˜cfv 5218  (class class class)co 5877  0cc0 7813   ยท cmul 7818  โ„•cn 8921  โ„•0cn0 9178  Basecbs 12464  0gc0g 12710  Smgrpcsgrp 12812  Mndcmnd 12822  .gcmg 12988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-minusg 12886  df-mulg 12989
This theorem is referenced by:  mulgass  13025
  Copyright terms: Public domain W3C validator