ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubdir GIF version

Theorem mulgsubdir 12878
Description: Distribution of group multiples over subtraction for group elements, subdir 8314 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b 𝐵 = (Base‘𝐺)
mulgsubdir.t · = (.g𝐺)
mulgsubdir.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 9252 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 mulgsubdir.b . . . 4 𝐵 = (Base‘𝐺)
3 mulgsubdir.t . . . 4 · = (.g𝐺)
4 eqid 2173 . . . 4 (+g𝐺) = (+g𝐺)
52, 3, 4mulgdir 12870 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
61, 5syl3anr2 1289 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
7 simpr1 1001 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
87zcnd 9344 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
9 simpr2 1002 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
109zcnd 9344 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
118, 10negsubd 8245 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + -𝑁) = (𝑀𝑁))
1211oveq1d 5877 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀𝑁) · 𝑋))
13 eqid 2173 . . . . . 6 (invg𝐺) = (invg𝐺)
142, 3, 13mulgneg 12857 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
15143adant3r1 1210 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1615oveq2d 5878 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
172, 3mulgcl 12856 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
18173adant3r2 1211 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
192, 3mulgcl 12856 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
20193adant3r1 1210 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
21 mulgsubdir.d . . . . 5 = (-g𝐺)
222, 4, 13, 21grpsubval 12776 . . . 4 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2318, 20, 22syl2anc 411 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2416, 23eqtr4d 2209 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
256, 12, 243eqtr3d 2214 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144  cfv 5205  (class class class)co 5862   + caddc 7786  cmin 8099  -cneg 8100  cz 9221  Basecbs 12425  +gcplusg 12489  Grpcgrp 12735  invgcminusg 12736  -gcsg 12737  .gcmg 12839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-nul 4121  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-iinf 4578  ax-cnex 7874  ax-resscn 7875  ax-1cn 7876  ax-1re 7877  ax-icn 7878  ax-addcl 7879  ax-addrcl 7880  ax-mulcl 7881  ax-addcom 7883  ax-addass 7885  ax-distr 7887  ax-i2m1 7888  ax-0lt1 7889  ax-0id 7891  ax-rnegex 7892  ax-cnre 7894  ax-pre-ltirr 7895  ax-pre-ltwlin 7896  ax-pre-lttrn 7897  ax-pre-ltadd 7899
This theorem depends on definitions:  df-bi 117  df-dc 833  df-3or 977  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-nel 2439  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-nul 3418  df-if 3530  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-tr 4094  df-id 4284  df-iord 4357  df-on 4359  df-ilim 4360  df-suc 4362  df-iom 4581  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-recs 6293  df-frec 6379  df-pnf 7965  df-mnf 7966  df-xr 7967  df-ltxr 7968  df-le 7969  df-sub 8101  df-neg 8102  df-inn 8888  df-2 8946  df-n0 9145  df-z 9222  df-uz 9497  df-fz 9975  df-seqfrec 10411  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-sbg 12740  df-mulg 12840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator