ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgsubdir GIF version

Theorem mulgsubdir 13232
Description: Distribution of group multiples over subtraction for group elements, subdir 8405 analog. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdir.b 𝐵 = (Base‘𝐺)
mulgsubdir.t · = (.g𝐺)
mulgsubdir.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdir ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))

Proof of Theorem mulgsubdir
StepHypRef Expression
1 znegcl 9348 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
2 mulgsubdir.b . . . 4 𝐵 = (Base‘𝐺)
3 mulgsubdir.t . . . 4 · = (.g𝐺)
4 eqid 2193 . . . 4 (+g𝐺) = (+g𝐺)
52, 3, 4mulgdir 13224 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
61, 5syl3anr2 1302 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)))
7 simpr1 1005 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℤ)
87zcnd 9440 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑀 ∈ ℂ)
9 simpr2 1006 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℤ)
109zcnd 9440 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → 𝑁 ∈ ℂ)
118, 10negsubd 8336 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 + -𝑁) = (𝑀𝑁))
1211oveq1d 5933 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀𝑁) · 𝑋))
13 eqid 2193 . . . . . 6 (invg𝐺) = (invg𝐺)
142, 3, 13mulgneg 13210 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
15143adant3r1 1214 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (-𝑁 · 𝑋) = ((invg𝐺)‘(𝑁 · 𝑋)))
1615oveq2d 5934 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
172, 3mulgcl 13209 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
18173adant3r2 1215 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
192, 3mulgcl 13209 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
20193adant3r1 1214 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
21 mulgsubdir.d . . . . 5 = (-g𝐺)
222, 4, 13, 21grpsubval 13118 . . . 4 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2318, 20, 22syl2anc 411 . . 3 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋) (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑁 · 𝑋))))
2416, 23eqtr4d 2229 . 2 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
256, 12, 243eqtr3d 2234 1 ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀𝑁) · 𝑋) = ((𝑀 · 𝑋) (𝑁 · 𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918   + caddc 7875  cmin 8190  -cneg 8191  cz 9317  Basecbs 12618  +gcplusg 12695  Grpcgrp 13072  invgcminusg 13073  -gcsg 13074  .gcmg 13189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-seqfrec 10519  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator