Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulgsubdir | GIF version |
Description: Distribution of group multiples over subtraction for group elements, subdir 8314 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) |
Ref | Expression |
---|---|
mulgsubdir.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgsubdir.t | ⊢ · = (.g‘𝐺) |
mulgsubdir.d | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
mulgsubdir | ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znegcl 9252 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
2 | mulgsubdir.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | mulgsubdir.t | . . . 4 ⊢ · = (.g‘𝐺) | |
4 | eqid 2173 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | 2, 3, 4 | mulgdir 12870 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
6 | 1, 5 | syl3anr2 1289 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) |
7 | simpr1 1001 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
8 | 7 | zcnd 9344 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) |
9 | simpr2 1002 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
10 | 9 | zcnd 9344 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) |
11 | 8, 10 | negsubd 8245 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
12 | 11 | oveq1d 5877 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 − 𝑁) · 𝑋)) |
13 | eqid 2173 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
14 | 2, 3, 13 | mulgneg 12857 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
15 | 14 | 3adant3r1 1210 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) |
16 | 15 | oveq2d 5878 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
17 | 2, 3 | mulgcl 12856 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) |
18 | 17 | 3adant3r2 1211 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) |
19 | 2, 3 | mulgcl 12856 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
20 | 19 | 3adant3r1 1210 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) ∈ 𝐵) |
21 | mulgsubdir.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
22 | 2, 4, 13, 21 | grpsubval 12776 | . . . 4 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
23 | 18, 20, 22 | syl2anc 411 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) |
24 | 16, 23 | eqtr4d 2209 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
25 | 6, 12, 24 | 3eqtr3d 2214 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 976 = wceq 1351 ∈ wcel 2144 ‘cfv 5205 (class class class)co 5862 + caddc 7786 − cmin 8099 -cneg 8100 ℤcz 9221 Basecbs 12425 +gcplusg 12489 Grpcgrp 12735 invgcminusg 12736 -gcsg 12737 .gcmg 12839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-nul 4121 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-iinf 4578 ax-cnex 7874 ax-resscn 7875 ax-1cn 7876 ax-1re 7877 ax-icn 7878 ax-addcl 7879 ax-addrcl 7880 ax-mulcl 7881 ax-addcom 7883 ax-addass 7885 ax-distr 7887 ax-i2m1 7888 ax-0lt1 7889 ax-0id 7891 ax-rnegex 7892 ax-cnre 7894 ax-pre-ltirr 7895 ax-pre-ltwlin 7896 ax-pre-lttrn 7897 ax-pre-ltadd 7899 |
This theorem depends on definitions: df-bi 117 df-dc 833 df-3or 977 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-nel 2439 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-nul 3418 df-if 3530 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-tr 4094 df-id 4284 df-iord 4357 df-on 4359 df-ilim 4360 df-suc 4362 df-iom 4581 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-recs 6293 df-frec 6379 df-pnf 7965 df-mnf 7966 df-xr 7967 df-ltxr 7968 df-le 7969 df-sub 8101 df-neg 8102 df-inn 8888 df-2 8946 df-n0 9145 df-z 9222 df-uz 9497 df-fz 9975 df-seqfrec 10411 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 df-minusg 12739 df-sbg 12740 df-mulg 12840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |