| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mulgsubdir | GIF version | ||
| Description: Distribution of group multiples over subtraction for group elements, subdir 8412 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| mulgsubdir.b | ⊢ 𝐵 = (Base‘𝐺) | 
| mulgsubdir.t | ⊢ · = (.g‘𝐺) | 
| mulgsubdir.d | ⊢ − = (-g‘𝐺) | 
| Ref | Expression | 
|---|---|
| mulgsubdir | ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | znegcl 9357 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 2 | mulgsubdir.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgsubdir.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 4 | eqid 2196 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 2, 3, 4 | mulgdir 13284 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) | 
| 6 | 1, 5 | syl3anr2 1302 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋))) | 
| 7 | simpr1 1005 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℤ) | |
| 8 | 7 | zcnd 9449 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑀 ∈ ℂ) | 
| 9 | simpr2 1006 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℤ) | |
| 10 | 9 | zcnd 9449 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → 𝑁 ∈ ℂ) | 
| 11 | 8, 10 | negsubd 8343 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | 
| 12 | 11 | oveq1d 5937 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + -𝑁) · 𝑋) = ((𝑀 − 𝑁) · 𝑋)) | 
| 13 | eqid 2196 | . . . . . 6 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 14 | 2, 3, 13 | mulgneg 13270 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) | 
| 15 | 14 | 3adant3r1 1214 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (-𝑁 · 𝑋) = ((invg‘𝐺)‘(𝑁 · 𝑋))) | 
| 16 | 15 | oveq2d 5938 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) | 
| 17 | 2, 3 | mulgcl 13269 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑀 · 𝑋) ∈ 𝐵) | 
| 18 | 17 | 3adant3r2 1215 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑀 · 𝑋) ∈ 𝐵) | 
| 19 | 2, 3 | mulgcl 13269 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | 
| 20 | 19 | 3adant3r1 1214 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → (𝑁 · 𝑋) ∈ 𝐵) | 
| 21 | mulgsubdir.d | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 22 | 2, 4, 13, 21 | grpsubval 13178 | . . . 4 ⊢ (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) | 
| 23 | 18, 20, 22 | syl2anc 411 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋) − (𝑁 · 𝑋)) = ((𝑀 · 𝑋)(+g‘𝐺)((invg‘𝐺)‘(𝑁 · 𝑋)))) | 
| 24 | 16, 23 | eqtr4d 2232 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑋)(+g‘𝐺)(-𝑁 · 𝑋)) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | 
| 25 | 6, 12, 24 | 3eqtr3d 2237 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 + caddc 7882 − cmin 8197 -cneg 8198 ℤcz 9326 Basecbs 12678 +gcplusg 12755 Grpcgrp 13132 invgcminusg 13133 -gcsg 13134 .gcmg 13249 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-seqfrec 10540 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mulg 13250 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |