ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1213
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1212 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1212 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnacan  6567  le2tri3i  8130  ltaddsublt  8592  div12ap  8715  lemul12b  8882  zdivadd  9409  zdivmul  9410  elfz  10083  fzmmmeqm  10127  fzrev  10153  absdiflt  11239  absdifle  11240  dvds0lem  11947  dvdsmulc  11965  dvds2add  11971  dvds2sub  11972  dvdstr  11974  lcmdvds  12220  psmettri2  14507  xmettri2  14540
  Copyright terms: Public domain W3C validator