ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1211
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1210 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1210 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 980
This theorem is referenced by:  nnacan  6513  le2tri3i  8066  ltaddsublt  8528  div12ap  8651  lemul12b  8818  zdivadd  9342  zdivmul  9343  elfz  10014  fzmmmeqm  10058  fzrev  10084  absdiflt  11101  absdifle  11102  dvds0lem  11808  dvdsmulc  11826  dvds2add  11832  dvds2sub  11833  dvdstr  11835  lcmdvds  12079  psmettri2  13831  xmettri2  13864
  Copyright terms: Public domain W3C validator