Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3comr | GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3coml 1205 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
3 | 2 | 3coml 1205 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: nnacan 6491 le2tri3i 8028 ltaddsublt 8490 div12ap 8611 lemul12b 8777 zdivadd 9301 zdivmul 9302 elfz 9971 fzmmmeqm 10014 fzrev 10040 absdiflt 11056 absdifle 11057 dvds0lem 11763 dvdsmulc 11781 dvds2add 11787 dvds2sub 11788 dvdstr 11790 lcmdvds 12033 psmettri2 13122 xmettri2 13155 |
Copyright terms: Public domain | W3C validator |