![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3comr | GIF version |
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3coml 1212 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
3 | 2 | 3coml 1212 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: nnacan 6565 le2tri3i 8128 ltaddsublt 8590 div12ap 8713 lemul12b 8880 zdivadd 9406 zdivmul 9407 elfz 10080 fzmmmeqm 10124 fzrev 10150 absdiflt 11236 absdifle 11237 dvds0lem 11944 dvdsmulc 11962 dvds2add 11968 dvds2sub 11969 dvdstr 11971 lcmdvds 12217 psmettri2 14496 xmettri2 14529 |
Copyright terms: Public domain | W3C validator |