| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3coml 1212 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3coml 1212 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: nnacan 6579 le2tri3i 8154 ltaddsublt 8617 div12ap 8740 lemul12b 8907 zdivadd 9434 zdivmul 9435 elfz 10108 fzmmmeqm 10152 fzrev 10178 absdiflt 11276 absdifle 11277 dvds0lem 11985 dvdsmulc 12003 dvds2add 12009 dvds2sub 12010 dvdstr 12012 lcmdvds 12274 psmettri2 14672 xmettri2 14705 |
| Copyright terms: Public domain | W3C validator |