| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3coml 1234 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3coml 1234 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: nnacan 6656 le2tri3i 8251 ltaddsublt 8714 div12ap 8837 lemul12b 9004 zdivadd 9532 zdivmul 9533 elfz 10206 fzmmmeqm 10250 fzrev 10276 absdiflt 11598 absdifle 11599 dvds0lem 12307 dvdsmulc 12325 dvds2add 12331 dvds2sub 12332 dvdstr 12334 lcmdvds 12596 psmettri2 14996 xmettri2 15029 |
| Copyright terms: Public domain | W3C validator |