| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3comr | GIF version | ||
| Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3comr | ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3coml 1213 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜑) → 𝜃) |
| 3 | 2 | 3coml 1213 | 1 ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: nnacan 6611 le2tri3i 8201 ltaddsublt 8664 div12ap 8787 lemul12b 8954 zdivadd 9482 zdivmul 9483 elfz 10156 fzmmmeqm 10200 fzrev 10226 absdiflt 11478 absdifle 11479 dvds0lem 12187 dvdsmulc 12205 dvds2add 12211 dvds2sub 12212 dvdstr 12214 lcmdvds 12476 psmettri2 14875 xmettri2 14908 |
| Copyright terms: Public domain | W3C validator |