ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1213
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1212 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1212 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnacan  6570  le2tri3i  8135  ltaddsublt  8598  div12ap  8721  lemul12b  8888  zdivadd  9415  zdivmul  9416  elfz  10089  fzmmmeqm  10133  fzrev  10159  absdiflt  11257  absdifle  11258  dvds0lem  11966  dvdsmulc  11984  dvds2add  11990  dvds2sub  11991  dvdstr  11993  lcmdvds  12247  psmettri2  14564  xmettri2  14597
  Copyright terms: Public domain W3C validator