ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1235
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1234 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1234 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  nnacan  6656  le2tri3i  8251  ltaddsublt  8714  div12ap  8837  lemul12b  9004  zdivadd  9532  zdivmul  9533  elfz  10206  fzmmmeqm  10250  fzrev  10276  absdiflt  11598  absdifle  11599  dvds0lem  12307  dvdsmulc  12325  dvds2add  12331  dvds2sub  12332  dvdstr  12334  lcmdvds  12596  psmettri2  14996  xmettri2  15029
  Copyright terms: Public domain W3C validator