ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1213
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1212 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1212 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  nnacan  6579  le2tri3i  8154  ltaddsublt  8617  div12ap  8740  lemul12b  8907  zdivadd  9434  zdivmul  9435  elfz  10108  fzmmmeqm  10152  fzrev  10178  absdiflt  11276  absdifle  11277  dvds0lem  11985  dvdsmulc  12003  dvds2add  12009  dvds2sub  12010  dvdstr  12012  lcmdvds  12274  psmettri2  14672  xmettri2  14705
  Copyright terms: Public domain W3C validator