ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3comr GIF version

Theorem 3comr 1214
Description: Commutation in antecedent. Rotate right. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3comr ((𝜒𝜑𝜓) → 𝜃)

Proof of Theorem 3comr
StepHypRef Expression
1 3exp.1 . . 3 ((𝜑𝜓𝜒) → 𝜃)
213coml 1213 . 2 ((𝜓𝜒𝜑) → 𝜃)
323coml 1213 1 ((𝜒𝜑𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  nnacan  6611  le2tri3i  8201  ltaddsublt  8664  div12ap  8787  lemul12b  8954  zdivadd  9482  zdivmul  9483  elfz  10156  fzmmmeqm  10200  fzrev  10226  absdiflt  11478  absdifle  11479  dvds0lem  12187  dvdsmulc  12205  dvds2add  12211  dvds2sub  12212  dvdstr  12214  lcmdvds  12476  psmettri2  14875  xmettri2  14908
  Copyright terms: Public domain W3C validator