![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ablsubadd | GIF version |
Description: Relationship between Abelian group subtraction and addition. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
ablsubadd.p | ⊢ + = (+g‘𝐺) |
ablsubadd.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
ablsubadd | ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablgrp 13099 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
2 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
4 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
5 | 2, 3, 4 | grpsubadd 12964 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) |
6 | 1, 5 | sylan 283 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑍 + 𝑌) = 𝑋)) |
7 | 2, 3 | ablcom 13112 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
8 | 7 | 3adant3r1 1212 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 + 𝑍) = (𝑍 + 𝑌)) |
9 | 8 | eqeq1d 2186 | . 2 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 + 𝑍) = 𝑋 ↔ (𝑍 + 𝑌) = 𝑋)) |
10 | 6, 9 | bitr4d 191 | 1 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ‘cfv 5218 (class class class)co 5878 Basecbs 12465 +gcplusg 12539 Grpcgrp 12883 -gcsg 12885 Abelcabl 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1re 7908 ax-addrcl 7911 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-inn 8923 df-2 8981 df-ndx 12468 df-slot 12469 df-base 12471 df-plusg 12552 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-minusg 12887 df-sbg 12888 df-cmn 13096 df-abl 13097 |
This theorem is referenced by: lmodvsubadd 13434 |
Copyright terms: Public domain | W3C validator |