ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubsub GIF version

Theorem grpsubsub 12815
Description: Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grpsubsub ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))

Proof of Theorem grpsubsub
StepHypRef Expression
1 simpr1 1001 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
2 grpsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpsubadd.m . . . . 5 = (-g𝐺)
42, 3grpsubcl 12806 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
543adant3r1 1210 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
6 grpsubadd.p . . . 4 + = (+g𝐺)
7 eqid 2173 . . . 4 (invg𝐺) = (invg𝐺)
82, 6, 7, 3grpsubval 12776 . . 3 ((𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = (𝑋 + ((invg𝐺)‘(𝑌 𝑍))))
91, 5, 8syl2anc 411 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + ((invg𝐺)‘(𝑌 𝑍))))
102, 3, 7grpinvsub 12808 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → ((invg𝐺)‘(𝑌 𝑍)) = (𝑍 𝑌))
11103adant3r1 1210 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((invg𝐺)‘(𝑌 𝑍)) = (𝑍 𝑌))
1211oveq2d 5878 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 + ((invg𝐺)‘(𝑌 𝑍))) = (𝑋 + (𝑍 𝑌)))
139, 12eqtrd 2206 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑋 + (𝑍 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 976   = wceq 1351  wcel 2144  cfv 5205  (class class class)co 5862  Basecbs 12425  +gcplusg 12489  Grpcgrp 12735  invgcminusg 12736  -gcsg 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 612  ax-in2 613  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-setind 4527  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-fal 1357  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ne 2344  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-dif 3126  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-sbg 12740
This theorem is referenced by:  ablsubsub  12914
  Copyright terms: Public domain W3C validator