| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpsubsub | GIF version | ||
| Description: Double group subtraction. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpsubadd.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubadd.p | ⊢ + = (+g‘𝐺) |
| grpsubadd.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubsub | ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 2 | grpsubadd.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpsubadd.m | . . . . 5 ⊢ − = (-g‘𝐺) | |
| 4 | 2, 3 | grpsubcl 13354 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) |
| 5 | 4 | 3adant3r1 1214 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 − 𝑍) ∈ 𝐵) |
| 6 | grpsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | eqid 2204 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 8 | 2, 6, 7, 3 | grpsubval 13320 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑌 − 𝑍) ∈ 𝐵) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + ((invg‘𝐺)‘(𝑌 − 𝑍)))) |
| 9 | 1, 5, 8 | syl2anc 411 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + ((invg‘𝐺)‘(𝑌 − 𝑍)))) |
| 10 | 2, 3, 7 | grpinvsub 13356 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((invg‘𝐺)‘(𝑌 − 𝑍)) = (𝑍 − 𝑌)) |
| 11 | 10 | 3adant3r1 1214 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((invg‘𝐺)‘(𝑌 − 𝑍)) = (𝑍 − 𝑌)) |
| 12 | 11 | oveq2d 5959 | . 2 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + ((invg‘𝐺)‘(𝑌 − 𝑍))) = (𝑋 + (𝑍 − 𝑌))) |
| 13 | 9, 12 | eqtrd 2237 | 1 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 − (𝑌 − 𝑍)) = (𝑋 + (𝑍 − 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 +gcplusg 12851 Grpcgrp 13274 invgcminusg 13275 -gcsg 13276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-sbg 13279 |
| This theorem is referenced by: ablsubsub 13596 |
| Copyright terms: Public domain | W3C validator |