ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr GIF version

Theorem cnplimclemr 15337
Description: Lemma for cnplimccntop 15338. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
cnplimclemr (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem cnplimclemr
Dummy variables 𝑑 𝑒 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 breq2 4086 . . . . . . . 8 (𝑠 = (𝑒 / 2) → ((abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
32imbi2d 230 . . . . . . 7 (𝑠 = (𝑒 / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
43rexralbidv 2556 . . . . . 6 (𝑠 = (𝑒 / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
5 cnplimclemr.l . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6 cnplimclemr.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
7 cnplimclemr.b . . . . . . . . . . 11 (𝜑𝐵𝐴)
86, 7sseldd 3225 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
91, 6, 8ellimc3ap 15329 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))))
105, 9mpbid 147 . . . . . . . 8 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠)))
1110simprd 114 . . . . . . 7 (𝜑 → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
1211adantr 276 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
13 rphalfcl 9873 . . . . . . 7 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
1413adantl 277 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
154, 12, 14rspcdva 2912 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
161ad5antr 496 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐹:𝐴⟶ℂ)
17 simpllr 534 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧𝐴)
1816, 17ffvelcdmd 5770 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝑧) ∈ ℂ)
197ad5antr 496 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵𝐴)
2016, 19ffvelcdmd 5770 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ ℂ)
21 eqid 2229 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2221cnmetdval 15197 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
2318, 20, 22syl2anc 411 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
24 cnplimccntop.k . . . . . . . . . 10 𝐾 = (MetOpen‘(abs ∘ − ))
25 cnplimc.j . . . . . . . . . 10 𝐽 = (𝐾t 𝐴)
266ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐴 ⊆ ℂ)
275ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
28 simp-5r 544 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑒 ∈ ℝ+)
29 simp-4r 542 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑑 ∈ ℝ+)
30 3simpc 1020 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑))
31 simp1lr 1085 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
3230, 31mpd 13 . . . . . . . . . 10 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))
3317, 19ovresd 6145 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (𝑧(abs ∘ − )𝐵))
3426, 17sseldd 3225 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧 ∈ ℂ)
358ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵 ∈ ℂ)
3621cnmetdval 15197 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3734, 35, 36syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3833, 37eqtrd 2262 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (abs‘(𝑧𝐵)))
39 simpr 110 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑)
4038, 39eqbrtrrd 4106 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘(𝑧𝐵)) < 𝑑)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 15336 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)
4223, 41eqbrtrd 4104 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)
4342exp31 364 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4443ralimdva 2597 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∀𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4544reximdva 2632 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4615, 45mpd 13 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
4746ralrimiva 2603 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
48 cnxmet 15199 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
49 xmetres2 15047 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5048, 6, 49sylancr 414 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5148a1i 9 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
52 eqid 2229 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
5352, 24metcnp2 15181 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵𝐴) → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
5450, 51, 7, 53syl3anc 1271 . . 3 (𝜑 → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
551, 47, 54mpbir2and 950 . 2 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
56 eqid 2229 . . . . . . 7 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
5756, 24, 52metrest 15174 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5848, 6, 57sylancr 414 . . . . 5 (𝜑 → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5925, 58eqtrid 2274 . . . 4 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
6059oveq1d 6015 . . 3 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾))
6160fveq1d 5628 . 2 (𝜑 → ((𝐽 CnP 𝐾)‘𝐵) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
6255, 61eleqtrrd 2309 1 (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197   class class class wbr 4082   × cxp 4716  cres 4720  ccom 4722  wf 5313  cfv 5317  (class class class)co 6000  cc 7993   < clt 8177  cmin 8313   # cap 8724   / cdiv 8815  2c2 9157  +crp 9845  abscabs 11503  t crest 13267  ∞Metcxmet 14494  MetOpencmopn 14499   CnP ccnp 14854   lim climc 15322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pm 6796  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-cnp 14857  df-limced 15324
This theorem is referenced by:  cnplimccntop  15338  dvcnp2cntop  15367
  Copyright terms: Public domain W3C validator