ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr GIF version

Theorem cnplimclemr 15216
Description: Lemma for cnplimccntop 15217. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
cnplimclemr (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem cnplimclemr
Dummy variables 𝑑 𝑒 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 breq2 4055 . . . . . . . 8 (𝑠 = (𝑒 / 2) → ((abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
32imbi2d 230 . . . . . . 7 (𝑠 = (𝑒 / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
43rexralbidv 2533 . . . . . 6 (𝑠 = (𝑒 / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
5 cnplimclemr.l . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6 cnplimclemr.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
7 cnplimclemr.b . . . . . . . . . . 11 (𝜑𝐵𝐴)
86, 7sseldd 3198 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
91, 6, 8ellimc3ap 15208 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))))
105, 9mpbid 147 . . . . . . . 8 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠)))
1110simprd 114 . . . . . . 7 (𝜑 → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
1211adantr 276 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
13 rphalfcl 9823 . . . . . . 7 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
1413adantl 277 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
154, 12, 14rspcdva 2886 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
161ad5antr 496 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐹:𝐴⟶ℂ)
17 simpllr 534 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧𝐴)
1816, 17ffvelcdmd 5729 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝑧) ∈ ℂ)
197ad5antr 496 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵𝐴)
2016, 19ffvelcdmd 5729 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ ℂ)
21 eqid 2206 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2221cnmetdval 15076 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
2318, 20, 22syl2anc 411 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
24 cnplimccntop.k . . . . . . . . . 10 𝐾 = (MetOpen‘(abs ∘ − ))
25 cnplimc.j . . . . . . . . . 10 𝐽 = (𝐾t 𝐴)
266ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐴 ⊆ ℂ)
275ad5antr 496 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
28 simp-5r 544 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑒 ∈ ℝ+)
29 simp-4r 542 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑑 ∈ ℝ+)
30 3simpc 999 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑))
31 simp1lr 1064 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
3230, 31mpd 13 . . . . . . . . . 10 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))
3317, 19ovresd 6100 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (𝑧(abs ∘ − )𝐵))
3426, 17sseldd 3198 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧 ∈ ℂ)
358ad5antr 496 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵 ∈ ℂ)
3621cnmetdval 15076 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3734, 35, 36syl2anc 411 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3833, 37eqtrd 2239 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (abs‘(𝑧𝐵)))
39 simpr 110 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑)
4038, 39eqbrtrrd 4075 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘(𝑧𝐵)) < 𝑑)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 15215 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)
4223, 41eqbrtrd 4073 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)
4342exp31 364 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4443ralimdva 2574 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∀𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4544reximdva 2609 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4615, 45mpd 13 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
4746ralrimiva 2580 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
48 cnxmet 15078 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
49 xmetres2 14926 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5048, 6, 49sylancr 414 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5148a1i 9 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
52 eqid 2206 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
5352, 24metcnp2 15060 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵𝐴) → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
5450, 51, 7, 53syl3anc 1250 . . 3 (𝜑 → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
551, 47, 54mpbir2and 947 . 2 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
56 eqid 2206 . . . . . . 7 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
5756, 24, 52metrest 15053 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5848, 6, 57sylancr 414 . . . . 5 (𝜑 → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5925, 58eqtrid 2251 . . . 4 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
6059oveq1d 5972 . . 3 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾))
6160fveq1d 5591 . 2 (𝜑 → ((𝐽 CnP 𝐾)‘𝐵) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
6255, 61eleqtrrd 2286 1 (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  wss 3170   class class class wbr 4051   × cxp 4681  cres 4685  ccom 4687  wf 5276  cfv 5280  (class class class)co 5957  cc 7943   < clt 8127  cmin 8263   # cap 8674   / cdiv 8765  2c2 9107  +crp 9795  abscabs 11383  t crest 13146  ∞Metcxmet 14373  MetOpencmopn 14378   CnP ccnp 14733   lim climc 15201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-map 6750  df-pm 6751  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-xneg 9914  df-xadd 9915  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-rest 13148  df-topgen 13167  df-psmet 14380  df-xmet 14381  df-met 14382  df-bl 14383  df-mopn 14384  df-top 14545  df-topon 14558  df-bases 14590  df-cnp 14736  df-limced 15203
This theorem is referenced by:  cnplimccntop  15217  dvcnp2cntop  15246
  Copyright terms: Public domain W3C validator