ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnplimclemr GIF version

Theorem cnplimclemr 13009
Description: Lemma for cnplimccntop 13010. The reverse direction. (Contributed by Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
Hypotheses
Ref Expression
cnplimccntop.k 𝐾 = (MetOpen‘(abs ∘ − ))
cnplimc.j 𝐽 = (𝐾t 𝐴)
cnplimclemr.a (𝜑𝐴 ⊆ ℂ)
cnplimclemr.f (𝜑𝐹:𝐴⟶ℂ)
cnplimclemr.b (𝜑𝐵𝐴)
cnplimclemr.l (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
Assertion
Ref Expression
cnplimclemr (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))

Proof of Theorem cnplimclemr
Dummy variables 𝑑 𝑒 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnplimclemr.f . . 3 (𝜑𝐹:𝐴⟶ℂ)
2 breq2 3969 . . . . . . . 8 (𝑠 = (𝑒 / 2) → ((abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠 ↔ (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
32imbi2d 229 . . . . . . 7 (𝑠 = (𝑒 / 2) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
43rexralbidv 2483 . . . . . 6 (𝑠 = (𝑒 / 2) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠) ↔ ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))))
5 cnplimclemr.l . . . . . . . . 9 (𝜑 → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
6 cnplimclemr.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℂ)
7 cnplimclemr.b . . . . . . . . . . 11 (𝜑𝐵𝐴)
86, 7sseldd 3129 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
91, 6, 8ellimc3ap 13001 . . . . . . . . 9 (𝜑 → ((𝐹𝐵) ∈ (𝐹 lim 𝐵) ↔ ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))))
105, 9mpbid 146 . . . . . . . 8 (𝜑 → ((𝐹𝐵) ∈ ℂ ∧ ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠)))
1110simprd 113 . . . . . . 7 (𝜑 → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
1211adantr 274 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → ∀𝑠 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑠))
13 rphalfcl 9581 . . . . . . 7 (𝑒 ∈ ℝ+ → (𝑒 / 2) ∈ ℝ+)
1413adantl 275 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑒 / 2) ∈ ℝ+)
154, 12, 14rspcdva 2821 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
161ad5antr 488 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐹:𝐴⟶ℂ)
17 simpllr 524 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧𝐴)
1816, 17ffvelrnd 5602 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝑧) ∈ ℂ)
197ad5antr 488 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵𝐴)
2016, 19ffvelrnd 5602 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ ℂ)
21 eqid 2157 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
2221cnmetdval 12900 . . . . . . . . . 10 (((𝐹𝑧) ∈ ℂ ∧ (𝐹𝐵) ∈ ℂ) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
2318, 20, 22syl2anc 409 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) = (abs‘((𝐹𝑧) − (𝐹𝐵))))
24 cnplimccntop.k . . . . . . . . . 10 𝐾 = (MetOpen‘(abs ∘ − ))
25 cnplimc.j . . . . . . . . . 10 𝐽 = (𝐾t 𝐴)
266ad5antr 488 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐴 ⊆ ℂ)
275ad5antr 488 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝐹𝐵) ∈ (𝐹 lim 𝐵))
28 simp-5r 534 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑒 ∈ ℝ+)
29 simp-4r 532 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑑 ∈ ℝ+)
30 3simpc 981 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑))
31 simp1lr 1046 . . . . . . . . . . 11 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)))
3230, 31mpd 13 . . . . . . . . . 10 (((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) ∧ 𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))
3317, 19ovresd 5958 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (𝑧(abs ∘ − )𝐵))
3426, 17sseldd 3129 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝑧 ∈ ℂ)
358ad5antr 488 . . . . . . . . . . . . 13 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → 𝐵 ∈ ℂ)
3621cnmetdval 12900 . . . . . . . . . . . . 13 ((𝑧 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3734, 35, 36syl2anc 409 . . . . . . . . . . . 12 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧(abs ∘ − )𝐵) = (abs‘(𝑧𝐵)))
3833, 37eqtrd 2190 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) = (abs‘(𝑧𝐵)))
39 simpr 109 . . . . . . . . . . 11 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑)
4038, 39eqbrtrrd 3988 . . . . . . . . . 10 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘(𝑧𝐵)) < 𝑑)
4124, 25, 26, 16, 19, 27, 28, 29, 17, 32, 40cnplimclemle 13008 . . . . . . . . 9 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < 𝑒)
4223, 41eqbrtrd 3986 . . . . . . . 8 ((((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) ∧ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2))) ∧ (𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑) → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)
4342exp31 362 . . . . . . 7 ((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4443ralimdva 2524 . . . . . 6 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∀𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4544reximdva 2559 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑑) → (abs‘((𝐹𝑧) − (𝐹𝐵))) < (𝑒 / 2)) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒)))
4615, 45mpd 13 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
4746ralrimiva 2530 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))
48 cnxmet 12902 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
49 xmetres2 12750 . . . . 5 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5048, 6, 49sylancr 411 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
5148a1i 9 . . . 4 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
52 eqid 2157 . . . . 5 (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))
5352, 24metcnp2 12884 . . . 4 ((((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵𝐴) → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
5450, 51, 7, 53syl3anc 1220 . . 3 (𝜑 → (𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑧𝐴 ((𝑧((abs ∘ − ) ↾ (𝐴 × 𝐴))𝐵) < 𝑑 → ((𝐹𝑧)(abs ∘ − )(𝐹𝐵)) < 𝑒))))
551, 47, 54mpbir2and 929 . 2 (𝜑𝐹 ∈ (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
56 eqid 2157 . . . . . . 7 ((abs ∘ − ) ↾ (𝐴 × 𝐴)) = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
5756, 24, 52metrest 12877 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5848, 6, 57sylancr 411 . . . . 5 (𝜑 → (𝐾t 𝐴) = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
5925, 58syl5eq 2202 . . . 4 (𝜑𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))))
6059oveq1d 5836 . . 3 (𝜑 → (𝐽 CnP 𝐾) = ((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾))
6160fveq1d 5469 . 2 (𝜑 → ((𝐽 CnP 𝐾)‘𝐵) = (((MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) CnP 𝐾)‘𝐵))
6255, 61eleqtrrd 2237 1 (𝜑𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wral 2435  wrex 2436  wss 3102   class class class wbr 3965   × cxp 4583  cres 4587  ccom 4589  wf 5165  cfv 5169  (class class class)co 5821  cc 7724   < clt 7906  cmin 8040   # cap 8450   / cdiv 8539  2c2 8878  +crp 9553  abscabs 10890  t crest 12322  ∞Metcxmet 12351  MetOpencmopn 12356   CnP ccnp 12557   lim climc 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-map 6592  df-pm 6593  df-sup 6924  df-inf 6925  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-xneg 9672  df-xadd 9673  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-rest 12324  df-topgen 12343  df-psmet 12358  df-xmet 12359  df-met 12360  df-bl 12361  df-mopn 12362  df-top 12367  df-topon 12380  df-bases 12412  df-cnp 12560  df-limced 12996
This theorem is referenced by:  cnplimccntop  13010  dvcnp2cntop  13034
  Copyright terms: Public domain W3C validator