| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcanap3 | GIF version | ||
| Description: A cancellation law for division. (Contributed by Jim Kingdon, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcanap3 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2189 | . 2 ⊢ (𝐵 · 𝐴) = (𝐵 · 𝐴) | |
| 2 | simp2 1000 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) | |
| 3 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) | |
| 4 | 2, 3 | mulcld 8019 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · 𝐴) ∈ ℂ) |
| 5 | 3simpc 998 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) | |
| 6 | divmulap 8673 | . . 3 ⊢ (((𝐵 · 𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (((𝐵 · 𝐴) / 𝐵) = 𝐴 ↔ (𝐵 · 𝐴) = (𝐵 · 𝐴))) | |
| 7 | 4, 3, 5, 6 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (((𝐵 · 𝐴) / 𝐵) = 𝐴 ↔ (𝐵 · 𝐴) = (𝐵 · 𝐴))) |
| 8 | 1, 7 | mpbiri 168 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4025 (class class class)co 5904 ℂcc 7849 0cc0 7851 · cmul 7856 # cap 8579 / cdiv 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4143 ax-pow 4199 ax-pr 4234 ax-un 4458 ax-setind 4561 ax-cnex 7942 ax-resscn 7943 ax-1cn 7944 ax-1re 7945 ax-icn 7946 ax-addcl 7947 ax-addrcl 7948 ax-mulcl 7949 ax-mulrcl 7950 ax-addcom 7951 ax-mulcom 7952 ax-addass 7953 ax-mulass 7954 ax-distr 7955 ax-i2m1 7956 ax-0lt1 7957 ax-1rid 7958 ax-0id 7959 ax-rnegex 7960 ax-precex 7961 ax-cnre 7962 ax-pre-ltirr 7963 ax-pre-ltwlin 7964 ax-pre-lttrn 7965 ax-pre-apti 7966 ax-pre-ltadd 7967 ax-pre-mulgt0 7968 ax-pre-mulext 7969 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2758 df-sbc 2982 df-dif 3150 df-un 3152 df-in 3154 df-ss 3161 df-pw 3599 df-sn 3620 df-pr 3621 df-op 3623 df-uni 3832 df-br 4026 df-opab 4087 df-id 4318 df-po 4321 df-iso 4322 df-xp 4657 df-rel 4658 df-cnv 4659 df-co 4660 df-dm 4661 df-iota 5203 df-fun 5244 df-fv 5250 df-riota 5859 df-ov 5907 df-oprab 5908 df-mpo 5909 df-pnf 8035 df-mnf 8036 df-xr 8037 df-ltxr 8038 df-le 8039 df-sub 8171 df-neg 8172 df-reap 8573 df-ap 8580 df-div 8671 |
| This theorem is referenced by: divcanap4 8697 muldivdirap 8705 divmuldivap 8710 divcanap3zi 8749 divcanap3i 8756 divcanap3d 8793 2halves 9189 halfaddsub 9194 zdiv 9382 sqdividap 10631 reim 10908 crim 10914 efival 11787 cosadd 11792 cosmul 11800 |
| Copyright terms: Public domain | W3C validator |