Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muldvds2 | GIF version |
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
muldvds2 | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmulcl 9199 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) | |
2 | 1 | anim1i 338 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
3 | 2 | 3impa 1177 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
4 | 3simpc 981 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
5 | zmulcl 9199 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) | |
6 | 5 | ancoms 266 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) |
7 | 6 | 3ad2antl1 1144 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ) |
8 | zcn 9151 | . . . . . . . 8 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
9 | zcn 9151 | . . . . . . . 8 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
10 | zcn 9151 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
11 | mulass 7842 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) | |
12 | 8, 9, 10, 11 | syl3an 1259 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
13 | 12 | 3coml 1189 | . . . . . 6 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
14 | 13 | 3expa 1182 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
15 | 14 | 3adantl3 1140 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀))) |
16 | 15 | eqeq1d 2163 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝐾) · 𝑀) = 𝑁 ↔ (𝑥 · (𝐾 · 𝑀)) = 𝑁)) |
17 | 16 | biimprd 157 | . 2 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝐾) · 𝑀) = 𝑁)) |
18 | 3, 4, 7, 17 | dvds1lem 11671 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁 → 𝑀 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 ℂcc 7709 · cmul 7716 ℤcz 9146 ∥ cdvds 11660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-dvds 11661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |