ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds2 GIF version

Theorem muldvds2 11757
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))

Proof of Theorem muldvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9244 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21anim1i 338 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
323impa 1184 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 3simpc 986 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
5 zmulcl 9244 . . . 4 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
65ancoms 266 . . 3 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
763ad2antl1 1149 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
8 zcn 9196 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9196 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
10 zcn 9196 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 mulass 7884 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
128, 9, 10, 11syl3an 1270 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
13123coml 1200 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
14133expa 1193 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
15143adantl3 1145 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
1615eqeq1d 2174 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝐾) · 𝑀) = 𝑁 ↔ (𝑥 · (𝐾 · 𝑀)) = 𝑁))
1716biimprd 157 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝐾) · 𝑀) = 𝑁))
183, 4, 7, 17dvds1lem 11742 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968   = wceq 1343  wcel 2136   class class class wbr 3982  (class class class)co 5842  cc 7751   · cmul 7758  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-dvds 11728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator