ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muldvds2 GIF version

Theorem muldvds2 11819
Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
muldvds2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))

Proof of Theorem muldvds2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zmulcl 9304 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
21anim1i 340 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
323impa 1194 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 3simpc 996 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
5 zmulcl 9304 . . . 4 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
65ancoms 268 . . 3 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
763ad2antl1 1159 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐾) ∈ ℤ)
8 zcn 9256 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9256 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
10 zcn 9256 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 mulass 7941 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
128, 9, 10, 11syl3an 1280 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
13123coml 1210 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
14133expa 1203 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
15143adantl3 1155 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐾) · 𝑀) = (𝑥 · (𝐾 · 𝑀)))
1615eqeq1d 2186 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (((𝑥 · 𝐾) · 𝑀) = 𝑁 ↔ (𝑥 · (𝐾 · 𝑀)) = 𝑁))
1716biimprd 158 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝐾 · 𝑀)) = 𝑁 → ((𝑥 · 𝐾) · 𝑀) = 𝑁))
183, 4, 7, 17dvds1lem 11804 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∥ 𝑁𝑀𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4003  (class class class)co 5874  cc 7808   · cmul 7815  cz 9251  cdvds 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-sub 8128  df-neg 8129  df-inn 8918  df-n0 9175  df-z 9252  df-dvds 11790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator