ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdscmul GIF version

Theorem dvdscmul 12295
Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdscmul ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))

Proof of Theorem dvdscmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 3simpc 1001 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2 zmulcl 9468 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
323adant3 1022 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ)
4 zmulcl 9468 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
543adant2 1021 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ)
63, 5jca 306 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ))
7 simpr 110 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
8 zcn 9419 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9 zcn 9419 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
10 zcn 9419 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
11 mul12 8243 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀)))
128, 9, 10, 11syl3an 1294 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀)))
13123coml 1215 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀)))
14133expa 1208 . . . . . 6 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀)))
15143adantl3 1160 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀)))
16 oveq2 5982 . . . . 5 ((𝑥 · 𝑀) = 𝑁 → (𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁))
1715, 16sylan9eq 2262 . . . 4 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑥 · 𝑀) = 𝑁) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁))
1817ex 115 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁)))
191, 6, 7, 18dvds1lem 12279 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
20193coml 1215 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  (class class class)co 5974  cc 7965   · cmul 7972  cz 9414  cdvds 12264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-sub 8287  df-neg 8288  df-inn 9079  df-n0 9338  df-z 9415  df-dvds 12265
This theorem is referenced by:  dvdscmulr  12297  mulgcd  12503  dvdsmulgcd  12512  rpmulgcd2  12583  pcprendvds2  12780  pcpremul  12782  mpodvdsmulf1o  15629
  Copyright terms: Public domain W3C validator