| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdscmul | GIF version | ||
| Description: Multiplication by a constant maintains the divides relation. Theorem 1.1(d) in [ApostolNT] p. 14 (multiplication property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| dvdscmul | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 999 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | zmulcl 9433 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) | |
| 3 | 2 | 3adant3 1020 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑀) ∈ ℤ) |
| 4 | zmulcl 9433 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) | |
| 5 | 4 | 3adant2 1019 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 · 𝑁) ∈ ℤ) |
| 6 | 3, 5 | jca 306 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) ∈ ℤ ∧ (𝐾 · 𝑁) ∈ ℤ)) |
| 7 | simpr 110 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 8 | zcn 9384 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 9 | zcn 9384 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
| 10 | zcn 9384 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 11 | mul12 8208 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀))) | |
| 12 | 8, 9, 10, 11 | syl3an 1292 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀))) |
| 13 | 12 | 3coml 1213 | . . . . . . 7 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀))) |
| 14 | 13 | 3expa 1206 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀))) |
| 15 | 14 | 3adantl3 1158 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · (𝑥 · 𝑀))) |
| 16 | oveq2 5959 | . . . . 5 ⊢ ((𝑥 · 𝑀) = 𝑁 → (𝐾 · (𝑥 · 𝑀)) = (𝐾 · 𝑁)) | |
| 17 | 15, 16 | sylan9eq 2259 | . . . 4 ⊢ ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑥 · 𝑀) = 𝑁) → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁)) |
| 18 | 17 | ex 115 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝑀) = 𝑁 → (𝑥 · (𝐾 · 𝑀)) = (𝐾 · 𝑁))) |
| 19 | 1, 6, 7, 18 | dvds1lem 12157 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) |
| 20 | 19 | 3coml 1213 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝐾 · 𝑀) ∥ (𝐾 · 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 · cmul 7937 ℤcz 9379 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sub 8252 df-neg 8253 df-inn 9044 df-n0 9303 df-z 9380 df-dvds 12143 |
| This theorem is referenced by: dvdscmulr 12175 mulgcd 12381 dvdsmulgcd 12390 rpmulgcd2 12461 pcprendvds2 12658 pcpremul 12660 mpodvdsmulf1o 15506 |
| Copyright terms: Public domain | W3C validator |