![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > divrecap | GIF version |
Description: Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.) |
Ref | Expression |
---|---|
divrecap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) | |
2 | simp1 999 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ) | |
3 | recclap 8667 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ) | |
4 | 3 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ) |
5 | 1, 2, 4 | mul12d 8140 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 · (1 / 𝐵))) = (𝐴 · (𝐵 · (1 / 𝐵)))) |
6 | recidap 8674 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (1 / 𝐵)) = 1) | |
7 | 6 | 3adant1 1017 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (1 / 𝐵)) = 1) |
8 | 7 | oveq2d 5913 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (𝐵 · (1 / 𝐵))) = (𝐴 · 1)) |
9 | 2 | mulridd 8005 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · 1) = 𝐴) |
10 | 5, 8, 9 | 3eqtrd 2226 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴) |
11 | 2, 4 | mulcld 8009 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (1 / 𝐵)) ∈ ℂ) |
12 | 3simpc 998 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0)) | |
13 | divmulap 8663 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴 · (1 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) ↔ (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴)) | |
14 | 2, 11, 12, 13 | syl3anc 1249 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) ↔ (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴)) |
15 | 10, 14 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 ℂcc 7840 0cc0 7842 1c1 7843 · cmul 7847 # cap 8569 / cdiv 8660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 |
This theorem is referenced by: divrecap2 8677 divassap 8678 divdirap 8685 dividap 8689 divnegap 8694 rec11ap 8698 divdiv32ap 8708 redivclap 8719 divrecapzi 8738 divrecapi 8745 divrecapd 8781 expdivap 10605 efival 11775 ef01bndlem 11799 cos01bnd 11801 divcnap 14532 |
Copyright terms: Public domain | W3C validator |