Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  divrecap GIF version

Theorem divrecap 8460
 Description: Relationship between division and reciprocal. (Contributed by Jim Kingdon, 24-Feb-2020.)
Assertion
Ref Expression
divrecap ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))

Proof of Theorem divrecap
StepHypRef Expression
1 simp2 982 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ)
2 simp1 981 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐴 ∈ ℂ)
3 recclap 8451 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ)
433adant1 999 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (1 / 𝐵) ∈ ℂ)
51, 2, 4mul12d 7926 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 · (1 / 𝐵))) = (𝐴 · (𝐵 · (1 / 𝐵))))
6 recidap 8458 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (1 / 𝐵)) = 1)
763adant1 999 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (1 / 𝐵)) = 1)
87oveq2d 5790 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (𝐵 · (1 / 𝐵))) = (𝐴 · 1))
92mulid1d 7795 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · 1) = 𝐴)
105, 8, 93eqtrd 2176 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴)
112, 4mulcld 7798 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 · (1 / 𝐵)) ∈ ℂ)
12 3simpc 980 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 ∈ ℂ ∧ 𝐵 # 0))
13 divmulap 8447 . . 3 ((𝐴 ∈ ℂ ∧ (𝐴 · (1 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) ↔ (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴))
142, 11, 12, 13syl3anc 1216 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) ↔ (𝐵 · (𝐴 · (1 / 𝐵))) = 𝐴))
1510, 14mpbird 166 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331   ∈ wcel 1480   class class class wbr 3929  (class class class)co 5774  ℂcc 7630  0cc0 7632  1c1 7633   · cmul 7637   # cap 8355   / cdiv 8444 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445 This theorem is referenced by:  divrecap2  8461  divassap  8462  divdirap  8469  dividap  8473  divnegap  8478  rec11ap  8482  divdiv32ap  8492  redivclap  8503  divrecapzi  8522  divrecapi  8529  divrecapd  8565  expdivap  10356  efival  11450  ef01bndlem  11474  cos01bnd  11476  divcnap  12738
 Copyright terms: Public domain W3C validator