ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc GIF version

Theorem cncfmptc 14750
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 998 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ))
2 simpl1 1002 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝐴𝑇)
32fmpttd 5713 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴):𝑆𝑇)
4 1rp 9723 . . . 4 1 ∈ ℝ+
542a1i 27 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦𝑆𝑧 ∈ ℝ+) → 1 ∈ ℝ+))
6 eqid 2193 . . . . . . . . . 10 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
7 eqidd 2194 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐴)
8 simprll 537 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦𝑆)
9 simpl1 1002 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴𝑇)
106, 7, 8, 9fvmptd3 5651 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑦) = 𝐴)
11 eqidd 2194 . . . . . . . . . 10 (𝑥 = 𝑤𝐴 = 𝐴)
12 simprlr 538 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤𝑆)
136, 11, 12, 9fvmptd3 5651 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑤) = 𝐴)
1410, 13oveq12d 5936 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = (𝐴𝐴))
15 simpl3 1004 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ)
1615, 9sseldd 3180 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
1716subidd 8318 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴𝐴) = 0)
1814, 17eqtrd 2226 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = 0)
1918abs00bd 11210 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) = 0)
20 simprr 531 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
2120rpgt0d 9765 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧)
2219, 21eqbrtrd 4051 . . . . 5 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)
2322a1d 22 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧))
2423ex 115 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)))
253, 5, 24elcncf1di 14734 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇)))
261, 25mpd 13 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164  wss 3153   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  cc 7870  0cc0 7872  1c1 7873   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  sub1cncf  14756  sub2cncf  14757  expcncf  14763  maxcncf  14769  mincncf  14770  ivthreinc  14799  hovercncf  14800  dvidlemap  14845  dvcnp2cntop  14848  dvmulxxbr  14851
  Copyright terms: Public domain W3C validator