| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cncfmptc | GIF version | ||
| Description: A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| cncfmptc | ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simpc 998 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ)) | |
| 2 | simpl1 1002 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑇) | |
| 3 | 2 | fmpttd 5717 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶𝑇) | 
| 4 | 1rp 9732 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 5 | 4 | 2a1i 27 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℝ+)) | 
| 6 | eqid 2196 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐴) = (𝑥 ∈ 𝑆 ↦ 𝐴) | |
| 7 | eqidd 2197 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) | |
| 8 | simprll 537 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
| 9 | simpl1 1002 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ 𝑇) | |
| 10 | 6, 7, 8, 9 | fvmptd3 5655 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) = 𝐴) | 
| 11 | eqidd 2197 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 𝐴 = 𝐴) | |
| 12 | simprlr 538 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤 ∈ 𝑆) | |
| 13 | 6, 11, 12, 9 | fvmptd3 5655 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤) = 𝐴) | 
| 14 | 10, 13 | oveq12d 5940 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = (𝐴 − 𝐴)) | 
| 15 | simpl3 1004 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ) | |
| 16 | 15, 9 | sseldd 3184 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ) | 
| 17 | 16 | subidd 8325 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴 − 𝐴) = 0) | 
| 18 | 14, 17 | eqtrd 2229 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = 0) | 
| 19 | 18 | abs00bd 11231 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) = 0) | 
| 20 | simprr 531 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+) | |
| 21 | 20 | rpgt0d 9774 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧) | 
| 22 | 19, 21 | eqbrtrd 4055 | . . . . 5 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧) | 
| 23 | 22 | a1d 22 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧)) | 
| 24 | 23 | ex 115 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧))) | 
| 25 | 3, 5, 24 | elcncf1di 14815 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇))) | 
| 26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2167 ⊆ wss 3157 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 1c1 7880 < clt 8061 − cmin 8197 ℝ+crp 9728 abscabs 11162 –cn→ccncf 14806 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-map 6709 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-rsqrt 11163 df-abs 11164 df-cncf 14807 | 
| This theorem is referenced by: sub1cncf 14838 sub2cncf 14839 expcncf 14845 maxcncf 14851 mincncf 14852 ivthreinc 14881 hovercncf 14882 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvcnp2cntop 14935 dvmulxxbr 14938 | 
| Copyright terms: Public domain | W3C validator |