Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfmptc | GIF version |
Description: A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
cncfmptc | ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 991 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ)) | |
2 | simpl1 995 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑇) | |
3 | 2 | fmpttd 5648 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶𝑇) |
4 | 1rp 9601 | . . . 4 ⊢ 1 ∈ ℝ+ | |
5 | 4 | 2a1i 27 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℝ+)) |
6 | eqid 2170 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐴) = (𝑥 ∈ 𝑆 ↦ 𝐴) | |
7 | eqidd 2171 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) | |
8 | simprll 532 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
9 | simpl1 995 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ 𝑇) | |
10 | 6, 7, 8, 9 | fvmptd3 5587 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) = 𝐴) |
11 | eqidd 2171 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 𝐴 = 𝐴) | |
12 | simprlr 533 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤 ∈ 𝑆) | |
13 | 6, 11, 12, 9 | fvmptd3 5587 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤) = 𝐴) |
14 | 10, 13 | oveq12d 5868 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = (𝐴 − 𝐴)) |
15 | simpl3 997 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ) | |
16 | 15, 9 | sseldd 3148 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ) |
17 | 16 | subidd 8205 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴 − 𝐴) = 0) |
18 | 14, 17 | eqtrd 2203 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = 0) |
19 | 18 | abs00bd 11017 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) = 0) |
20 | simprr 527 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+) | |
21 | 20 | rpgt0d 9643 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧) |
22 | 19, 21 | eqbrtrd 4009 | . . . . 5 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧) |
23 | 22 | a1d 22 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧)) |
24 | 23 | ex 114 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧))) |
25 | 3, 5, 24 | elcncf1di 13281 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 973 ∈ wcel 2141 ⊆ wss 3121 class class class wbr 3987 ↦ cmpt 4048 ‘cfv 5196 (class class class)co 5850 ℂcc 7759 0cc0 7761 1c1 7762 < clt 7941 − cmin 8077 ℝ+crp 9597 abscabs 10948 –cn→ccncf 13272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-frec 6367 df-map 6624 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-n0 9123 df-z 9200 df-uz 9475 df-rp 9598 df-seqfrec 10389 df-exp 10463 df-cj 10793 df-rsqrt 10949 df-abs 10950 df-cncf 13273 |
This theorem is referenced by: expcncf 13307 dvidlemap 13375 dvcnp2cntop 13378 dvmulxxbr 13381 |
Copyright terms: Public domain | W3C validator |