| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncfmptc | GIF version | ||
| Description: A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) |
| Ref | Expression |
|---|---|
| cncfmptc | ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpc 1020 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ)) | |
| 2 | simpl1 1024 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑇) | |
| 3 | 2 | fmpttd 5783 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶𝑇) |
| 4 | 1rp 9841 | . . . 4 ⊢ 1 ∈ ℝ+ | |
| 5 | 4 | 2a1i 27 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℝ+)) |
| 6 | eqid 2229 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐴) = (𝑥 ∈ 𝑆 ↦ 𝐴) | |
| 7 | eqidd 2230 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) | |
| 8 | simprll 537 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
| 9 | simpl1 1024 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ 𝑇) | |
| 10 | 6, 7, 8, 9 | fvmptd3 5721 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) = 𝐴) |
| 11 | eqidd 2230 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 𝐴 = 𝐴) | |
| 12 | simprlr 538 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤 ∈ 𝑆) | |
| 13 | 6, 11, 12, 9 | fvmptd3 5721 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤) = 𝐴) |
| 14 | 10, 13 | oveq12d 6012 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = (𝐴 − 𝐴)) |
| 15 | simpl3 1026 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ) | |
| 16 | 15, 9 | sseldd 3225 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ) |
| 17 | 16 | subidd 8433 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴 − 𝐴) = 0) |
| 18 | 14, 17 | eqtrd 2262 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = 0) |
| 19 | 18 | abs00bd 11563 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) = 0) |
| 20 | simprr 531 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+) | |
| 21 | 20 | rpgt0d 9883 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧) |
| 22 | 19, 21 | eqbrtrd 4104 | . . . . 5 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧) |
| 23 | 22 | a1d 22 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧)) |
| 24 | 23 | ex 115 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧))) |
| 25 | 3, 5, 24 | elcncf1di 15238 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇))) |
| 26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 ⊆ wss 3197 class class class wbr 4082 ↦ cmpt 4144 ‘cfv 5314 (class class class)co 5994 ℂcc 7985 0cc0 7987 1c1 7988 < clt 8169 − cmin 8305 ℝ+crp 9837 abscabs 11494 –cn→ccncf 15229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-map 6787 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-n0 9358 df-z 9435 df-uz 9711 df-rp 9838 df-seqfrec 10657 df-exp 10748 df-cj 11339 df-rsqrt 11495 df-abs 11496 df-cncf 15230 |
| This theorem is referenced by: sub1cncf 15261 sub2cncf 15262 expcncf 15268 maxcncf 15274 mincncf 15275 ivthreinc 15304 hovercncf 15305 dvidlemap 15350 dvidrelem 15351 dvidsslem 15352 dvcnp2cntop 15358 dvmulxxbr 15361 |
| Copyright terms: Public domain | W3C validator |