ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc GIF version

Theorem cncfmptc 15118
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 999 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ))
2 simpl1 1003 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝐴𝑇)
32fmpttd 5745 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴):𝑆𝑇)
4 1rp 9792 . . . 4 1 ∈ ℝ+
542a1i 27 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦𝑆𝑧 ∈ ℝ+) → 1 ∈ ℝ+))
6 eqid 2206 . . . . . . . . . 10 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
7 eqidd 2207 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐴)
8 simprll 537 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦𝑆)
9 simpl1 1003 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴𝑇)
106, 7, 8, 9fvmptd3 5683 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑦) = 𝐴)
11 eqidd 2207 . . . . . . . . . 10 (𝑥 = 𝑤𝐴 = 𝐴)
12 simprlr 538 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤𝑆)
136, 11, 12, 9fvmptd3 5683 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑤) = 𝐴)
1410, 13oveq12d 5972 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = (𝐴𝐴))
15 simpl3 1005 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ)
1615, 9sseldd 3196 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
1716subidd 8384 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴𝐴) = 0)
1814, 17eqtrd 2239 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = 0)
1918abs00bd 11427 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) = 0)
20 simprr 531 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
2120rpgt0d 9834 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧)
2219, 21eqbrtrd 4070 . . . . 5 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)
2322a1d 22 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧))
2423ex 115 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)))
253, 5, 24elcncf1di 15101 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇)))
261, 25mpd 13 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981  wcel 2177  wss 3168   class class class wbr 4048  cmpt 4110  cfv 5277  (class class class)co 5954  cc 7936  0cc0 7938  1c1 7939   < clt 8120  cmin 8256  +crp 9788  abscabs 11358  cnccncf 15092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-frec 6487  df-map 6747  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-n0 9309  df-z 9386  df-uz 9662  df-rp 9789  df-seqfrec 10606  df-exp 10697  df-cj 11203  df-rsqrt 11359  df-abs 11360  df-cncf 15093
This theorem is referenced by:  sub1cncf  15124  sub2cncf  15125  expcncf  15131  maxcncf  15137  mincncf  15138  ivthreinc  15167  hovercncf  15168  dvidlemap  15213  dvidrelem  15214  dvidsslem  15215  dvcnp2cntop  15221  dvmulxxbr  15224
  Copyright terms: Public domain W3C validator