![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfmptc | GIF version |
Description: A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
cncfmptc | ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 996 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ)) | |
2 | simpl1 1000 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑇) | |
3 | 2 | fmpttd 5671 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶𝑇) |
4 | 1rp 9656 | . . . 4 ⊢ 1 ∈ ℝ+ | |
5 | 4 | 2a1i 27 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℝ+)) |
6 | eqid 2177 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐴) = (𝑥 ∈ 𝑆 ↦ 𝐴) | |
7 | eqidd 2178 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) | |
8 | simprll 537 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
9 | simpl1 1000 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ 𝑇) | |
10 | 6, 7, 8, 9 | fvmptd3 5609 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) = 𝐴) |
11 | eqidd 2178 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 𝐴 = 𝐴) | |
12 | simprlr 538 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤 ∈ 𝑆) | |
13 | 6, 11, 12, 9 | fvmptd3 5609 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤) = 𝐴) |
14 | 10, 13 | oveq12d 5892 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = (𝐴 − 𝐴)) |
15 | simpl3 1002 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ) | |
16 | 15, 9 | sseldd 3156 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ) |
17 | 16 | subidd 8255 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴 − 𝐴) = 0) |
18 | 14, 17 | eqtrd 2210 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = 0) |
19 | 18 | abs00bd 11074 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) = 0) |
20 | simprr 531 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+) | |
21 | 20 | rpgt0d 9698 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧) |
22 | 19, 21 | eqbrtrd 4025 | . . . . 5 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧) |
23 | 22 | a1d 22 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧)) |
24 | 23 | ex 115 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧))) |
25 | 3, 5, 24 | elcncf1di 14036 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 ⊆ wss 3129 class class class wbr 4003 ↦ cmpt 4064 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 0cc0 7810 1c1 7811 < clt 7991 − cmin 8127 ℝ+crp 9652 abscabs 11005 –cn→ccncf 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-map 6649 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-2 8977 df-n0 9176 df-z 9253 df-uz 9528 df-rp 9653 df-seqfrec 10445 df-exp 10519 df-cj 10850 df-rsqrt 11006 df-abs 11007 df-cncf 14028 |
This theorem is referenced by: expcncf 14062 dvidlemap 14130 dvcnp2cntop 14133 dvmulxxbr 14136 |
Copyright terms: Public domain | W3C validator |