ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc GIF version

Theorem cncfmptc 14052
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 996 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ))
2 simpl1 1000 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝐴𝑇)
32fmpttd 5671 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴):𝑆𝑇)
4 1rp 9656 . . . 4 1 ∈ ℝ+
542a1i 27 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦𝑆𝑧 ∈ ℝ+) → 1 ∈ ℝ+))
6 eqid 2177 . . . . . . . . . 10 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
7 eqidd 2178 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐴)
8 simprll 537 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦𝑆)
9 simpl1 1000 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴𝑇)
106, 7, 8, 9fvmptd3 5609 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑦) = 𝐴)
11 eqidd 2178 . . . . . . . . . 10 (𝑥 = 𝑤𝐴 = 𝐴)
12 simprlr 538 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤𝑆)
136, 11, 12, 9fvmptd3 5609 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑤) = 𝐴)
1410, 13oveq12d 5892 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = (𝐴𝐴))
15 simpl3 1002 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ)
1615, 9sseldd 3156 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
1716subidd 8255 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴𝐴) = 0)
1814, 17eqtrd 2210 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = 0)
1918abs00bd 11074 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) = 0)
20 simprr 531 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
2120rpgt0d 9698 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧)
2219, 21eqbrtrd 4025 . . . . 5 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)
2322a1d 22 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧))
2423ex 115 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)))
253, 5, 24elcncf1di 14036 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇)))
261, 25mpd 13 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148  wss 3129   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   < clt 7991  cmin 8127  +crp 9652  abscabs 11005  cnccncf 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-map 6649  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-rsqrt 11006  df-abs 11007  df-cncf 14028
This theorem is referenced by:  expcncf  14062  dvidlemap  14130  dvcnp2cntop  14133  dvmulxxbr  14136
  Copyright terms: Public domain W3C validator