ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc GIF version

Theorem cncfmptc 13222
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 986 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ))
2 simpl1 990 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝐴𝑇)
32fmpttd 5640 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴):𝑆𝑇)
4 1rp 9593 . . . 4 1 ∈ ℝ+
542a1i 27 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦𝑆𝑧 ∈ ℝ+) → 1 ∈ ℝ+))
6 eqid 2165 . . . . . . . . . 10 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
7 eqidd 2166 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐴)
8 simprll 527 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦𝑆)
9 simpl1 990 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴𝑇)
106, 7, 8, 9fvmptd3 5579 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑦) = 𝐴)
11 eqidd 2166 . . . . . . . . . 10 (𝑥 = 𝑤𝐴 = 𝐴)
12 simprlr 528 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤𝑆)
136, 11, 12, 9fvmptd3 5579 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑤) = 𝐴)
1410, 13oveq12d 5860 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = (𝐴𝐴))
15 simpl3 992 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ)
1615, 9sseldd 3143 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
1716subidd 8197 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴𝐴) = 0)
1814, 17eqtrd 2198 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = 0)
1918abs00bd 11008 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) = 0)
20 simprr 522 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
2120rpgt0d 9635 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧)
2219, 21eqbrtrd 4004 . . . . 5 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)
2322a1d 22 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧))
2423ex 114 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)))
253, 5, 24elcncf1di 13206 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇)))
261, 25mpd 13 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  wss 3116   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   < clt 7933  cmin 8069  +crp 9589  abscabs 10939  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-cncf 13198
This theorem is referenced by:  expcncf  13232  dvidlemap  13300  dvcnp2cntop  13303  dvmulxxbr  13306
  Copyright terms: Public domain W3C validator