![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncfmptc | GIF version |
Description: A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.) |
Ref | Expression |
---|---|
cncfmptc | ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 998 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ)) | |
2 | simpl1 1002 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ 𝑇) | |
3 | 2 | fmpttd 5713 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴):𝑆⟶𝑇) |
4 | 1rp 9723 | . . . 4 ⊢ 1 ∈ ℝ+ | |
5 | 4 | 2a1i 27 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦 ∈ 𝑆 ∧ 𝑧 ∈ ℝ+) → 1 ∈ ℝ+)) |
6 | eqid 2193 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝑆 ↦ 𝐴) = (𝑥 ∈ 𝑆 ↦ 𝐴) | |
7 | eqidd 2194 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐴) | |
8 | simprll 537 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦 ∈ 𝑆) | |
9 | simpl1 1002 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ 𝑇) | |
10 | 6, 7, 8, 9 | fvmptd3 5651 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) = 𝐴) |
11 | eqidd 2194 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑤 → 𝐴 = 𝐴) | |
12 | simprlr 538 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤 ∈ 𝑆) | |
13 | 6, 11, 12, 9 | fvmptd3 5651 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤) = 𝐴) |
14 | 10, 13 | oveq12d 5936 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = (𝐴 − 𝐴)) |
15 | simpl3 1004 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ) | |
16 | 15, 9 | sseldd 3180 | . . . . . . . . 9 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ) |
17 | 16 | subidd 8318 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴 − 𝐴) = 0) |
18 | 14, 17 | eqtrd 2226 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤)) = 0) |
19 | 18 | abs00bd 11210 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) = 0) |
20 | simprr 531 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+) | |
21 | 20 | rpgt0d 9765 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧) |
22 | 19, 21 | eqbrtrd 4051 | . . . . 5 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧) |
23 | 22 | a1d 22 | . . . 4 ⊢ (((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧)) |
24 | 23 | ex 115 | . . 3 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦 − 𝑤)) < 1 → (abs‘(((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑦) − ((𝑥 ∈ 𝑆 ↦ 𝐴)‘𝑤))) < 𝑧))) |
25 | 3, 5, 24 | elcncf1di 14734 | . 2 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇))) |
26 | 1, 25 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 ⊆ wss 3153 class class class wbr 4029 ↦ cmpt 4090 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 0cc0 7872 1c1 7873 < clt 8054 − cmin 8190 ℝ+crp 9719 abscabs 11141 –cn→ccncf 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-frec 6444 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-n0 9241 df-z 9318 df-uz 9593 df-rp 9720 df-seqfrec 10519 df-exp 10610 df-cj 10986 df-rsqrt 11142 df-abs 11143 df-cncf 14726 |
This theorem is referenced by: sub1cncf 14756 sub2cncf 14757 expcncf 14763 maxcncf 14769 mincncf 14770 ivthreinc 14799 hovercncf 14800 dvidlemap 14845 dvcnp2cntop 14848 dvmulxxbr 14851 |
Copyright terms: Public domain | W3C validator |