ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmptc GIF version

Theorem cncfmptc 12765
Description: A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
Assertion
Ref Expression
cncfmptc ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇

Proof of Theorem cncfmptc
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpc 980 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ))
2 simpl1 984 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ 𝑥𝑆) → 𝐴𝑇)
32fmpttd 5575 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴):𝑆𝑇)
4 1rp 9457 . . . 4 1 ∈ ℝ+
542a1i 27 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑦𝑆𝑧 ∈ ℝ+) → 1 ∈ ℝ+))
6 eqid 2139 . . . . . . . . . 10 (𝑥𝑆𝐴) = (𝑥𝑆𝐴)
7 eqidd 2140 . . . . . . . . . 10 (𝑥 = 𝑦𝐴 = 𝐴)
8 simprll 526 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑦𝑆)
9 simpl1 984 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴𝑇)
106, 7, 8, 9fvmptd3 5514 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑦) = 𝐴)
11 eqidd 2140 . . . . . . . . . 10 (𝑥 = 𝑤𝐴 = 𝐴)
12 simprlr 527 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑤𝑆)
136, 11, 12, 9fvmptd3 5514 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((𝑥𝑆𝐴)‘𝑤) = 𝐴)
1410, 13oveq12d 5792 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = (𝐴𝐴))
15 simpl3 986 . . . . . . . . . 10 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑇 ⊆ ℂ)
1615, 9sseldd 3098 . . . . . . . . 9 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝐴 ∈ ℂ)
1716subidd 8073 . . . . . . . 8 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (𝐴𝐴) = 0)
1814, 17eqtrd 2172 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤)) = 0)
1918abs00bd 10850 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) = 0)
20 simprr 521 . . . . . . 7 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 𝑧 ∈ ℝ+)
2120rpgt0d 9498 . . . . . 6 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → 0 < 𝑧)
2219, 21eqbrtrd 3950 . . . . 5 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)
2322a1d 22 . . . 4 (((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) ∧ ((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+)) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧))
2423ex 114 . . 3 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (((𝑦𝑆𝑤𝑆) ∧ 𝑧 ∈ ℝ+) → ((abs‘(𝑦𝑤)) < 1 → (abs‘(((𝑥𝑆𝐴)‘𝑦) − ((𝑥𝑆𝐴)‘𝑤))) < 𝑧)))
253, 5, 24elcncf1di 12749 . 2 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → ((𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇)))
261, 25mpd 13 1 ((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962  wcel 1480  wss 3071   class class class wbr 3929  cmpt 3989  cfv 5123  (class class class)co 5774  cc 7630  0cc0 7632  1c1 7633   < clt 7812  cmin 7945  +crp 9453  abscabs 10781  cnccncf 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-n0 8990  df-z 9067  df-uz 9339  df-rp 9454  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-rsqrt 10782  df-abs 10783  df-cncf 12741
This theorem is referenced by:  expcncf  12775  dvidlemap  12843  dvcnp2cntop  12846  dvmulxxbr  12849
  Copyright terms: Public domain W3C validator