ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptun GIF version

Theorem mptun 5431
Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
mptun (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))

Proof of Theorem mptun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4126 . 2 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
2 df-mpt 4126 . . . 4 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
3 df-mpt 4126 . . . 4 (𝑥𝐵𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}
42, 3uneq12i 3336 . . 3 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
5 elun 3325 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 458 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶))
7 andir 823 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
86, 7bitri 184 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶)))
98opabbii 4130 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
10 unopab 4142 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦 = 𝐶) ∨ (𝑥𝐵𝑦 = 𝐶))}
119, 10eqtr4i 2233 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦 = 𝐶)})
124, 11eqtr4i 2233 . 2 ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦 = 𝐶)}
131, 12eqtr4i 2233 1 (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wo 712   = wceq 1375  wcel 2180  cun 3175  {copab 4123  cmpt 4124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-opab 4125  df-mpt 4126
This theorem is referenced by:  fmptap  5802  fmptapd  5803
  Copyright terms: Public domain W3C validator