Step | Hyp | Ref
| Expression |
1 | | df-mpt 4052 |
. 2
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} |
2 | | df-mpt 4052 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} |
3 | | df-mpt 4052 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)} |
4 | 2, 3 | uneq12i 3279 |
. . 3
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) |
5 | | elun 3268 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
6 | 5 | anbi1i 455 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 = 𝐶)) |
7 | | andir 814 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))) |
8 | 6, 7 | bitri 183 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))) |
9 | 8 | opabbii 4056 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))} |
10 | | unopab 4068 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶))} |
11 | 9, 10 | eqtr4i 2194 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶)} ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐶)}) |
12 | 4, 11 | eqtr4i 2194 |
. 2
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝑦 = 𝐶)} |
13 | 1, 12 | eqtr4i 2194 |
1
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ∪ (𝑥 ∈ 𝐵 ↦ 𝐶)) |