ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpundir GIF version

Theorem xpundir 4732
Description: Distributive law for cross product over union. Similar to Theorem 103 of [Suppes] p. 52. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
xpundir ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))

Proof of Theorem xpundir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-xp 4681 . 2 ((𝐴𝐵) × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
2 df-xp 4681 . . . 4 (𝐴 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)}
3 df-xp 4681 . . . 4 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
42, 3uneq12i 3325 . . 3 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
5 elun 3314 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 458 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶))
7 andir 821 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
86, 7bitri 184 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶) ↔ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶)))
98opabbii 4111 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
10 unopab 4123 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐶) ∨ (𝑥𝐵𝑦𝐶))}
119, 10eqtr4i 2229 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)} = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐶)} ∪ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)})
124, 11eqtr4i 2229 . 2 ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝑦𝐶)}
131, 12eqtr4i 2229 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 104  wo 710   = wceq 1373  wcel 2176  cun 3164  {copab 4104   × cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-opab 4106  df-xp 4681
This theorem is referenced by:  xpun  4736  resundi  4972  xpfi  7029  xp2dju  7327  hashxp  10971
  Copyright terms: Public domain W3C validator