ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexun GIF version

Theorem rexun 3313
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 2459 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
2 19.43 1626 . . 3 (∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
3 elun 3274 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43anbi1i 458 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
5 andir 819 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
64, 5bitri 184 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
76exbii 1603 . . 3 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 df-rex 2459 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
9 df-rex 2459 . . . 4 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
108, 9orbi12i 764 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
112, 7, 103bitr4i 212 . 2 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
121, 11bitri 184 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wo 708  wex 1490  wcel 2146  wrex 2454  cun 3125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131
This theorem is referenced by:  rexprg  3641  rextpg  3643  iunxun  3961  finexdc  6892  nninfwlpoimlemg  7163  exfzdc  10210  dvdsprmpweqnn  12302
  Copyright terms: Public domain W3C validator