| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexun | GIF version | ||
| Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
| Ref | Expression |
|---|---|
| rexun | ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2494 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
| 2 | 19.43 1654 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | elun 3325 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 4 | 3 | anbi1i 458 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
| 5 | andir 823 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 6 | 4, 5 | bitri 184 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 7 | 6 | exbii 1631 | . . 3 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 8 | df-rex 2494 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 9 | df-rex 2494 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 10 | 8, 9 | orbi12i 768 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 11 | 2, 7, 10 | 3bitr4i 212 | . 2 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
| 12 | 1, 11 | bitri 184 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 712 ∃wex 1518 ∈ wcel 2180 ∃wrex 2489 ∪ cun 3175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 |
| This theorem is referenced by: rexprg 3698 rextpg 3700 iunxun 4024 finexdc 7032 nninfwlpoimlemg 7310 exfzdc 10413 dvdsprmpweqnn 12825 |
| Copyright terms: Public domain | W3C validator |