Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem3 GIF version

Theorem bj-inf2vnlem3 16335
Description: Lemma for bj-inf2vn 16337. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-inf2vnlem3.bd1 BOUNDED 𝐴
bj-inf2vnlem3.bd2 BOUNDED 𝑍
Assertion
Ref Expression
bj-inf2vnlem3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑍,𝑦

Proof of Theorem bj-inf2vnlem3
Dummy variables 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 16334 . . 3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
2 bj-inf2vnlem3.bd1 . . . . . 6 BOUNDED 𝐴
32bdeli 16209 . . . . 5 BOUNDED 𝑧𝐴
4 bj-inf2vnlem3.bd2 . . . . . 6 BOUNDED 𝑍
54bdeli 16209 . . . . 5 BOUNDED 𝑧𝑍
63, 5ax-bdim 16177 . . . 4 BOUNDED (𝑧𝐴𝑧𝑍)
7 nfv 1574 . . . 4 𝑧(𝑡𝐴𝑡𝑍)
8 nfv 1574 . . . 4 𝑧(𝑢𝐴𝑢𝑍)
9 nfv 1574 . . . 4 𝑢(𝑧𝐴𝑧𝑍)
10 nfv 1574 . . . 4 𝑢(𝑡𝐴𝑡𝑍)
11 eleq1 2292 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝐴𝑡𝐴))
12 eleq1 2292 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝑍𝑡𝑍))
1311, 12imbi12d 234 . . . . 5 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) ↔ (𝑡𝐴𝑡𝑍)))
1413biimpd 144 . . . 4 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) → (𝑡𝐴𝑡𝑍)))
15 eleq1 2292 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝐴𝑢𝐴))
16 eleq1 2292 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝑍𝑢𝑍))
1715, 16imbi12d 234 . . . . 5 (𝑧 = 𝑢 → ((𝑧𝐴𝑧𝑍) ↔ (𝑢𝐴𝑢𝑍)))
1817biimprd 158 . . . 4 (𝑧 = 𝑢 → ((𝑢𝐴𝑢𝑍) → (𝑧𝐴𝑧𝑍)))
196, 7, 8, 9, 10, 14, 18bdsetindis 16332 . . 3 (∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍)) → ∀𝑧(𝑧𝐴𝑧𝑍))
201, 19syl6 33 . 2 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧𝐴𝑧𝑍)))
21 ssalel 3212 . 2 (𝐴𝑍 ↔ ∀𝑧(𝑧𝐴𝑧𝑍))
2220, 21imbitrrdi 162 1 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713  wal 1393   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197  c0 3491  suc csuc 4456  BOUNDED wbdc 16203  Ind wind 16289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bdim 16177  ax-bdsetind 16331
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-suc 4462  df-bdc 16204  df-bj-ind 16290
This theorem is referenced by:  bj-inf2vn  16337
  Copyright terms: Public domain W3C validator