Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem3 GIF version

Theorem bj-inf2vnlem3 15585
Description: Lemma for bj-inf2vn 15587. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-inf2vnlem3.bd1 BOUNDED 𝐴
bj-inf2vnlem3.bd2 BOUNDED 𝑍
Assertion
Ref Expression
bj-inf2vnlem3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑍,𝑦

Proof of Theorem bj-inf2vnlem3
Dummy variables 𝑧 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem2 15584 . . 3 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍))))
2 bj-inf2vnlem3.bd1 . . . . . 6 BOUNDED 𝐴
32bdeli 15459 . . . . 5 BOUNDED 𝑧𝐴
4 bj-inf2vnlem3.bd2 . . . . . 6 BOUNDED 𝑍
54bdeli 15459 . . . . 5 BOUNDED 𝑧𝑍
63, 5ax-bdim 15427 . . . 4 BOUNDED (𝑧𝐴𝑧𝑍)
7 nfv 1542 . . . 4 𝑧(𝑡𝐴𝑡𝑍)
8 nfv 1542 . . . 4 𝑧(𝑢𝐴𝑢𝑍)
9 nfv 1542 . . . 4 𝑢(𝑧𝐴𝑧𝑍)
10 nfv 1542 . . . 4 𝑢(𝑡𝐴𝑡𝑍)
11 eleq1 2259 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝐴𝑡𝐴))
12 eleq1 2259 . . . . . 6 (𝑧 = 𝑡 → (𝑧𝑍𝑡𝑍))
1311, 12imbi12d 234 . . . . 5 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) ↔ (𝑡𝐴𝑡𝑍)))
1413biimpd 144 . . . 4 (𝑧 = 𝑡 → ((𝑧𝐴𝑧𝑍) → (𝑡𝐴𝑡𝑍)))
15 eleq1 2259 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝐴𝑢𝐴))
16 eleq1 2259 . . . . . 6 (𝑧 = 𝑢 → (𝑧𝑍𝑢𝑍))
1715, 16imbi12d 234 . . . . 5 (𝑧 = 𝑢 → ((𝑧𝐴𝑧𝑍) ↔ (𝑢𝐴𝑢𝑍)))
1817biimprd 158 . . . 4 (𝑧 = 𝑢 → ((𝑢𝐴𝑢𝑍) → (𝑧𝐴𝑧𝑍)))
196, 7, 8, 9, 10, 14, 18bdsetindis 15582 . . 3 (∀𝑢(∀𝑡𝑢 (𝑡𝐴𝑡𝑍) → (𝑢𝐴𝑢𝑍)) → ∀𝑧(𝑧𝐴𝑧𝑍))
201, 19syl6 33 . 2 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧𝐴𝑧𝑍)))
21 dfss2 3172 . 2 (𝐴𝑍 ↔ ∀𝑧(𝑧𝐴𝑧𝑍))
2220, 21imbitrrdi 162 1 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑍𝐴𝑍))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  c0 3450  suc csuc 4400  BOUNDED wbdc 15453  Ind wind 15539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bdim 15427  ax-bdsetind 15581
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-suc 4406  df-bdc 15454  df-bj-ind 15540
This theorem is referenced by:  bj-inf2vn  15587
  Copyright terms: Public domain W3C validator