Step | Hyp | Ref
| Expression |
1 | | bj-inf2vnlem2 13853 |
. . 3
⊢
(∀𝑥 ∈
𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)))) |
2 | | bj-inf2vnlem3.bd1 |
. . . . . 6
⊢
BOUNDED 𝐴 |
3 | 2 | bdeli 13728 |
. . . . 5
⊢
BOUNDED 𝑧 ∈ 𝐴 |
4 | | bj-inf2vnlem3.bd2 |
. . . . . 6
⊢
BOUNDED 𝑍 |
5 | 4 | bdeli 13728 |
. . . . 5
⊢
BOUNDED 𝑧 ∈ 𝑍 |
6 | 3, 5 | ax-bdim 13696 |
. . . 4
⊢
BOUNDED (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) |
7 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑧(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) |
8 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑧(𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) |
9 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑢(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) |
10 | | nfv 1516 |
. . . 4
⊢
Ⅎ𝑢(𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) |
11 | | eleq1 2229 |
. . . . . 6
⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) |
12 | | eleq1 2229 |
. . . . . 6
⊢ (𝑧 = 𝑡 → (𝑧 ∈ 𝑍 ↔ 𝑡 ∈ 𝑍)) |
13 | 11, 12 | imbi12d 233 |
. . . . 5
⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
14 | 13 | biimpd 143 |
. . . 4
⊢ (𝑧 = 𝑡 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) → (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍))) |
15 | | eleq1 2229 |
. . . . . 6
⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴)) |
16 | | eleq1 2229 |
. . . . . 6
⊢ (𝑧 = 𝑢 → (𝑧 ∈ 𝑍 ↔ 𝑢 ∈ 𝑍)) |
17 | 15, 16 | imbi12d 233 |
. . . . 5
⊢ (𝑧 = 𝑢 → ((𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍) ↔ (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍))) |
18 | 17 | biimprd 157 |
. . . 4
⊢ (𝑧 = 𝑢 → ((𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍) → (𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
19 | 6, 7, 8, 9, 10, 14, 18 | bdsetindis 13851 |
. . 3
⊢
(∀𝑢(∀𝑡 ∈ 𝑢 (𝑡 ∈ 𝐴 → 𝑡 ∈ 𝑍) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝑍)) → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
20 | 1, 19 | syl6 33 |
. 2
⊢
(∀𝑥 ∈
𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍))) |
21 | | dfss2 3131 |
. 2
⊢ (𝐴 ⊆ 𝑍 ↔ ∀𝑧(𝑧 ∈ 𝐴 → 𝑧 ∈ 𝑍)) |
22 | 20, 21 | syl6ibr 161 |
1
⊢
(∀𝑥 ∈
𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑍 → 𝐴 ⊆ 𝑍)) |