Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resopab2 | GIF version |
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.) |
Ref | Expression |
---|---|
resopab2 | ⊢ (𝐴 ⊆ 𝐵 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resopab 4944 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))} | |
2 | ssel 3147 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 2 | pm4.71d 393 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
4 | 3 | anbi1d 465 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑))) |
5 | anass 401 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitr2di 197 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | 6 | opabbidv 4064 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
8 | 1, 7 | eqtrid 2220 | 1 ⊢ (𝐴 ⊆ 𝐵 → ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 {copab 4058 ↾ cres 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 df-rel 4627 df-res 4632 |
This theorem is referenced by: resmpt 4948 |
Copyright terms: Public domain | W3C validator |