Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > map1 | GIF version |
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
Ref | Expression |
---|---|
map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6621 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
2 | 1oex 6392 | . . 3 ⊢ 1o ∈ V | |
3 | elex 2737 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | fnovex 5875 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o ↑𝑚 𝐴) ∈ V) | |
5 | 1, 2, 3, 4 | mp3an12i 1331 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ∈ V) |
6 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
7 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
8 | 7 | 2a1i 27 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) → ∅ ∈ V)) |
9 | p0ex 4167 | . . . 4 ⊢ {∅} ∈ V | |
10 | xpexg 4718 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
11 | 9, 10 | mpan2 422 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ∈ V) |
12 | 11 | a1d 22 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V)) |
13 | el1o 6405 | . . . . 5 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o ↔ 𝑦 = ∅)) |
15 | df1o2 6397 | . . . . . . . 8 ⊢ 1o = {∅} | |
16 | 15 | oveq1i 5852 | . . . . . . 7 ⊢ (1o ↑𝑚 𝐴) = ({∅} ↑𝑚 𝐴) |
17 | 16 | eleq2i 2233 | . . . . . 6 ⊢ (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴)) |
18 | elmapg 6627 | . . . . . . 7 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | |
19 | 9, 18 | mpan 421 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
20 | 17, 19 | syl5bb 191 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
21 | 7 | fconst2 5702 | . . . . 5 ⊢ (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅})) |
22 | 20, 21 | bitr2di 196 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o ↑𝑚 𝐴))) |
23 | 14, 22 | anbi12d 465 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)))) |
24 | ancom 264 | . . 3 ⊢ ((𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)) ↔ (𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅)) | |
25 | 23, 24 | bitr2di 196 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})))) |
26 | 5, 6, 8, 12, 25 | en2d 6734 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ∅c0 3409 {csn 3576 class class class wbr 3982 × cxp 4602 Fn wfn 5183 ⟶wf 5184 (class class class)co 5842 1oc1o 6377 ↑𝑚 cmap 6614 ≈ cen 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-map 6616 df-en 6707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |