![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map1 | GIF version |
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
Ref | Expression |
---|---|
map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6503 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
2 | 1oex 6275 | . . 3 ⊢ 1o ∈ V | |
3 | elex 2668 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | fnovex 5758 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o ↑𝑚 𝐴) ∈ V) | |
5 | 1, 2, 3, 4 | mp3an12i 1302 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ∈ V) |
6 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
7 | 0ex 4015 | . . 3 ⊢ ∅ ∈ V | |
8 | 7 | 2a1i 27 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) → ∅ ∈ V)) |
9 | p0ex 4072 | . . . 4 ⊢ {∅} ∈ V | |
10 | xpexg 4613 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
11 | 9, 10 | mpan2 419 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ∈ V) |
12 | 11 | a1d 22 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V)) |
13 | el1o 6288 | . . . . 5 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o ↔ 𝑦 = ∅)) |
15 | df1o2 6280 | . . . . . . . 8 ⊢ 1o = {∅} | |
16 | 15 | oveq1i 5738 | . . . . . . 7 ⊢ (1o ↑𝑚 𝐴) = ({∅} ↑𝑚 𝐴) |
17 | 16 | eleq2i 2181 | . . . . . 6 ⊢ (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴)) |
18 | elmapg 6509 | . . . . . . 7 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | |
19 | 9, 18 | mpan 418 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
20 | 17, 19 | syl5bb 191 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
21 | 7 | fconst2 5591 | . . . . 5 ⊢ (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅})) |
22 | 20, 21 | syl6rbb 196 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o ↑𝑚 𝐴))) |
23 | 14, 22 | anbi12d 462 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)))) |
24 | ancom 264 | . . 3 ⊢ ((𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)) ↔ (𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅)) | |
25 | 23, 24 | syl6rbb 196 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})))) |
26 | 5, 6, 8, 12, 25 | en2d 6616 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ∅c0 3329 {csn 3493 class class class wbr 3895 × cxp 4497 Fn wfn 5076 ⟶wf 5077 (class class class)co 5728 1oc1o 6260 ↑𝑚 cmap 6496 ≈ cen 6586 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-suc 4253 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-1o 6267 df-map 6498 df-en 6589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |