| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > map1 | GIF version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) | 
| Ref | Expression | 
|---|---|
| map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fnmap 6714 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | 1oex 6482 | . . 3 ⊢ 1o ∈ V | |
| 3 | elex 2774 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | fnovex 5955 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o ↑𝑚 𝐴) ∈ V) | |
| 5 | 1, 2, 3, 4 | mp3an12i 1352 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ∈ V) | 
| 6 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) | 
| 7 | 0ex 4160 | . . 3 ⊢ ∅ ∈ V | |
| 8 | 7 | 2a1i 27 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) → ∅ ∈ V)) | 
| 9 | p0ex 4221 | . . . 4 ⊢ {∅} ∈ V | |
| 10 | xpexg 4777 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
| 11 | 9, 10 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ∈ V) | 
| 12 | 11 | a1d 22 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V)) | 
| 13 | el1o 6495 | . . . . 5 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o ↔ 𝑦 = ∅)) | 
| 15 | df1o2 6487 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 16 | 15 | oveq1i 5932 | . . . . . . 7 ⊢ (1o ↑𝑚 𝐴) = ({∅} ↑𝑚 𝐴) | 
| 17 | 16 | eleq2i 2263 | . . . . . 6 ⊢ (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴)) | 
| 18 | elmapg 6720 | . . . . . . 7 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | |
| 19 | 9, 18 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | 
| 20 | 17, 19 | bitrid 192 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | 
| 21 | 7 | fconst2 5779 | . . . . 5 ⊢ (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅})) | 
| 22 | 20, 21 | bitr2di 197 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o ↑𝑚 𝐴))) | 
| 23 | 14, 22 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)))) | 
| 24 | ancom 266 | . . 3 ⊢ ((𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)) ↔ (𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅)) | |
| 25 | 23, 24 | bitr2di 197 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})))) | 
| 26 | 5, 6, 8, 12, 25 | en2d 6827 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∅c0 3450 {csn 3622 class class class wbr 4033 × cxp 4661 Fn wfn 5253 ⟶wf 5254 (class class class)co 5922 1oc1o 6467 ↑𝑚 cmap 6707 ≈ cen 6797 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-1o 6474 df-map 6709 df-en 6800 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |