| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > map1 | GIF version | ||
| Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
| Ref | Expression |
|---|---|
| map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6732 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | 1oex 6500 | . . 3 ⊢ 1o ∈ V | |
| 3 | elex 2782 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 4 | fnovex 5967 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o ↑𝑚 𝐴) ∈ V) | |
| 5 | 1, 2, 3, 4 | mp3an12i 1353 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ∈ V) |
| 6 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
| 7 | 0ex 4170 | . . 3 ⊢ ∅ ∈ V | |
| 8 | 7 | 2a1i 27 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) → ∅ ∈ V)) |
| 9 | p0ex 4231 | . . . 4 ⊢ {∅} ∈ V | |
| 10 | xpexg 4787 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
| 11 | 9, 10 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ∈ V) |
| 12 | 11 | a1d 22 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V)) |
| 13 | el1o 6513 | . . . . 5 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
| 14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o ↔ 𝑦 = ∅)) |
| 15 | df1o2 6505 | . . . . . . . 8 ⊢ 1o = {∅} | |
| 16 | 15 | oveq1i 5944 | . . . . . . 7 ⊢ (1o ↑𝑚 𝐴) = ({∅} ↑𝑚 𝐴) |
| 17 | 16 | eleq2i 2271 | . . . . . 6 ⊢ (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴)) |
| 18 | elmapg 6738 | . . . . . . 7 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | |
| 19 | 9, 18 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
| 20 | 17, 19 | bitrid 192 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
| 21 | 7 | fconst2 5791 | . . . . 5 ⊢ (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅})) |
| 22 | 20, 21 | bitr2di 197 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o ↑𝑚 𝐴))) |
| 23 | 14, 22 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)))) |
| 24 | ancom 266 | . . 3 ⊢ ((𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)) ↔ (𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅)) | |
| 25 | 23, 24 | bitr2di 197 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})))) |
| 26 | 5, 6, 8, 12, 25 | en2d 6845 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∅c0 3459 {csn 3632 class class class wbr 4043 × cxp 4671 Fn wfn 5263 ⟶wf 5264 (class class class)co 5934 1oc1o 6485 ↑𝑚 cmap 6725 ≈ cen 6815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-1o 6492 df-map 6727 df-en 6818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |