![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > map1 | GIF version |
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) |
Ref | Expression |
---|---|
map1 | ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmap 6711 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
2 | 1oex 6479 | . . 3 ⊢ 1o ∈ V | |
3 | elex 2771 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
4 | fnovex 5952 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o ↑𝑚 𝐴) ∈ V) | |
5 | 1, 2, 3, 4 | mp3an12i 1352 | . 2 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ∈ V) |
6 | 2 | a1i 9 | . 2 ⊢ (𝐴 ∈ 𝑉 → 1o ∈ V) |
7 | 0ex 4157 | . . 3 ⊢ ∅ ∈ V | |
8 | 7 | 2a1i 27 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) → ∅ ∈ V)) |
9 | p0ex 4218 | . . . 4 ⊢ {∅} ∈ V | |
10 | xpexg 4774 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V) | |
11 | 9, 10 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ∈ V) |
12 | 11 | a1d 22 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V)) |
13 | el1o 6492 | . . . . 5 ⊢ (𝑦 ∈ 1o ↔ 𝑦 = ∅) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ 1o ↔ 𝑦 = ∅)) |
15 | df1o2 6484 | . . . . . . . 8 ⊢ 1o = {∅} | |
16 | 15 | oveq1i 5929 | . . . . . . 7 ⊢ (1o ↑𝑚 𝐴) = ({∅} ↑𝑚 𝐴) |
17 | 16 | eleq2i 2260 | . . . . . 6 ⊢ (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴)) |
18 | elmapg 6717 | . . . . . . 7 ⊢ (({∅} ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) | |
19 | 9, 18 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
20 | 17, 19 | bitrid 192 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (1o ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅})) |
21 | 7 | fconst2 5776 | . . . . 5 ⊢ (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅})) |
22 | 20, 21 | bitr2di 197 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o ↑𝑚 𝐴))) |
23 | 14, 22 | anbi12d 473 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)))) |
24 | ancom 266 | . . 3 ⊢ ((𝑦 = ∅ ∧ 𝑥 ∈ (1o ↑𝑚 𝐴)) ↔ (𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅)) | |
25 | 23, 24 | bitr2di 197 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ (1o ↑𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o ∧ 𝑥 = (𝐴 × {∅})))) |
26 | 5, 6, 8, 12, 25 | en2d 6824 | 1 ⊢ (𝐴 ∈ 𝑉 → (1o ↑𝑚 𝐴) ≈ 1o) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∅c0 3447 {csn 3619 class class class wbr 4030 × cxp 4658 Fn wfn 5250 ⟶wf 5251 (class class class)co 5919 1oc1o 6464 ↑𝑚 cmap 6704 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-1o 6471 df-map 6706 df-en 6797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |