ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 GIF version

Theorem map1 6918
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)

Proof of Theorem map1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6755 . . 3 𝑚 Fn (V × V)
2 1oex 6523 . . 3 1o ∈ V
3 elex 2785 . . 3 (𝐴𝑉𝐴 ∈ V)
4 fnovex 5990 . . 3 (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o𝑚 𝐴) ∈ V)
51, 2, 3, 4mp3an12i 1354 . 2 (𝐴𝑉 → (1o𝑚 𝐴) ∈ V)
62a1i 9 . 2 (𝐴𝑉 → 1o ∈ V)
7 0ex 4179 . . 3 ∅ ∈ V
872a1i 27 . 2 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) → ∅ ∈ V))
9 p0ex 4240 . . . 4 {∅} ∈ V
10 xpexg 4797 . . . 4 ((𝐴𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V)
119, 10mpan2 425 . . 3 (𝐴𝑉 → (𝐴 × {∅}) ∈ V)
1211a1d 22 . 2 (𝐴𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V))
13 el1o 6536 . . . . 5 (𝑦 ∈ 1o𝑦 = ∅)
1413a1i 9 . . . 4 (𝐴𝑉 → (𝑦 ∈ 1o𝑦 = ∅))
15 df1o2 6528 . . . . . . . 8 1o = {∅}
1615oveq1i 5967 . . . . . . 7 (1o𝑚 𝐴) = ({∅} ↑𝑚 𝐴)
1716eleq2i 2273 . . . . . 6 (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴))
18 elmapg 6761 . . . . . . 7 (({∅} ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
199, 18mpan 424 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
2017, 19bitrid 192 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
217fconst2 5814 . . . . 5 (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅}))
2220, 21bitr2di 197 . . . 4 (𝐴𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o𝑚 𝐴)))
2314, 22anbi12d 473 . . 3 (𝐴𝑉 → ((𝑦 ∈ 1o𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴))))
24 ancom 266 . . 3 ((𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴)) ↔ (𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅))
2523, 24bitr2di 197 . 2 (𝐴𝑉 → ((𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o𝑥 = (𝐴 × {∅}))))
265, 6, 8, 12, 25en2d 6872 1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  Vcvv 2773  c0 3464  {csn 3638   class class class wbr 4051   × cxp 4681   Fn wfn 5275  wf 5276  (class class class)co 5957  1oc1o 6508  𝑚 cmap 6748  cen 6838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-1o 6515  df-map 6750  df-en 6841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator