ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  map1 GIF version

Theorem map1 6963
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)

Proof of Theorem map1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6800 . . 3 𝑚 Fn (V × V)
2 1oex 6568 . . 3 1o ∈ V
3 elex 2811 . . 3 (𝐴𝑉𝐴 ∈ V)
4 fnovex 6033 . . 3 (( ↑𝑚 Fn (V × V) ∧ 1o ∈ V ∧ 𝐴 ∈ V) → (1o𝑚 𝐴) ∈ V)
51, 2, 3, 4mp3an12i 1375 . 2 (𝐴𝑉 → (1o𝑚 𝐴) ∈ V)
62a1i 9 . 2 (𝐴𝑉 → 1o ∈ V)
7 0ex 4210 . . 3 ∅ ∈ V
872a1i 27 . 2 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) → ∅ ∈ V))
9 p0ex 4271 . . . 4 {∅} ∈ V
10 xpexg 4832 . . . 4 ((𝐴𝑉 ∧ {∅} ∈ V) → (𝐴 × {∅}) ∈ V)
119, 10mpan2 425 . . 3 (𝐴𝑉 → (𝐴 × {∅}) ∈ V)
1211a1d 22 . 2 (𝐴𝑉 → (𝑦 ∈ 1o → (𝐴 × {∅}) ∈ V))
13 el1o 6581 . . . . 5 (𝑦 ∈ 1o𝑦 = ∅)
1413a1i 9 . . . 4 (𝐴𝑉 → (𝑦 ∈ 1o𝑦 = ∅))
15 df1o2 6573 . . . . . . . 8 1o = {∅}
1615oveq1i 6010 . . . . . . 7 (1o𝑚 𝐴) = ({∅} ↑𝑚 𝐴)
1716eleq2i 2296 . . . . . 6 (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥 ∈ ({∅} ↑𝑚 𝐴))
18 elmapg 6806 . . . . . . 7 (({∅} ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
199, 18mpan 424 . . . . . 6 (𝐴𝑉 → (𝑥 ∈ ({∅} ↑𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
2017, 19bitrid 192 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (1o𝑚 𝐴) ↔ 𝑥:𝐴⟶{∅}))
217fconst2 5855 . . . . 5 (𝑥:𝐴⟶{∅} ↔ 𝑥 = (𝐴 × {∅}))
2220, 21bitr2di 197 . . . 4 (𝐴𝑉 → (𝑥 = (𝐴 × {∅}) ↔ 𝑥 ∈ (1o𝑚 𝐴)))
2314, 22anbi12d 473 . . 3 (𝐴𝑉 → ((𝑦 ∈ 1o𝑥 = (𝐴 × {∅})) ↔ (𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴))))
24 ancom 266 . . 3 ((𝑦 = ∅ ∧ 𝑥 ∈ (1o𝑚 𝐴)) ↔ (𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅))
2523, 24bitr2di 197 . 2 (𝐴𝑉 → ((𝑥 ∈ (1o𝑚 𝐴) ∧ 𝑦 = ∅) ↔ (𝑦 ∈ 1o𝑥 = (𝐴 × {∅}))))
265, 6, 8, 12, 25en2d 6917 1 (𝐴𝑉 → (1o𝑚 𝐴) ≈ 1o)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {csn 3666   class class class wbr 4082   × cxp 4716   Fn wfn 5312  wf 5313  (class class class)co 6000  1oc1o 6553  𝑚 cmap 6793  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-map 6795  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator