| Step | Hyp | Ref
 | Expression | 
| 1 |   | f1od2.2 | 
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝑊) | 
| 2 | 1 | ralrimivva 2579 | 
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊) | 
| 3 |   | f1od2.1 | 
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
| 4 | 3 | fnmpo 6260 | 
. . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑊 → 𝐹 Fn (𝐴 × 𝐵)) | 
| 5 | 2, 4 | syl 14 | 
. 2
⊢ (𝜑 → 𝐹 Fn (𝐴 × 𝐵)) | 
| 6 |   | f1od2.3 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → (𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌)) | 
| 7 |   | opelxpi 4695 | 
. . . . . 6
⊢ ((𝐼 ∈ 𝑋 ∧ 𝐽 ∈ 𝑌) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 8 | 6, 7 | syl 14 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐷) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 9 | 8 | ralrimiva 2570 | 
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ 𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 10 |   | eqid 2196 | 
. . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) | 
| 11 | 10 | fnmpt 5384 | 
. . . 4
⊢
(∀𝑧 ∈
𝐷 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌) → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) | 
| 12 | 9, 11 | syl 14 | 
. . 3
⊢ (𝜑 → (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷) | 
| 13 |   | elxp7 6228 | 
. . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵))) | 
| 14 | 13 | anbi1i 458 | 
. . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 15 |   | anass 401 | 
. . . . . . . . 9
⊢ (((𝑎 ∈ (V × V) ∧
((1st ‘𝑎)
∈ 𝐴 ∧
(2nd ‘𝑎)
∈ 𝐵)) ∧ 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶))) | 
| 16 |   | f1od2.4 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 17 | 16 | sbcbidv 3048 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ([(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 18 | 17 | sbcbidv 3048 | 
. . . . . . . . . . 11
⊢ (𝜑 → ([(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥][(2nd
‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)))) | 
| 19 |   | sbcan 3032 | 
. . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ([(2nd
‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶)) | 
| 20 |   | sbcan 3032 | 
. . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵)) | 
| 21 |   | vex 2766 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑎 ∈ V | 
| 22 |   | 2ndexg 6226 | 
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 ∈ V → (2nd
‘𝑎) ∈
V) | 
| 23 | 21, 22 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘𝑎) ∈ V | 
| 24 |   | sbcg 3059 | 
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | 
| 25 | 23, 24 | ax-mp 5 | 
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | 
| 26 |   | sbcel1v 3052 | 
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) | 
| 27 | 25, 26 | anbi12i 460 | 
. . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 ∈ 𝐴 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 28 | 20, 27 | bitri 184 | 
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 29 |   | sbceq2g 3106 | 
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 30 | 23, 29 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶 ↔ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 31 | 28, 30 | anbi12i 460 | 
. . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦](𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ [(2nd ‘𝑎) / 𝑦]𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 32 | 19, 31 | bitri 184 | 
. . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 33 | 32 | sbcbii 3049 | 
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ [(1st
‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 34 |   | sbcan 3032 | 
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥]((𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ([(1st
‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 35 |   | sbcan 3032 | 
. . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵)) | 
| 36 |   | sbcel1v 3052 | 
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ↔ (1st ‘𝑎) ∈ 𝐴) | 
| 37 |   | 1stexg 6225 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ V → (1st
‘𝑎) ∈
V) | 
| 38 | 21, 37 | ax-mp 5 | 
. . . . . . . . . . . . . . . 16
⊢
(1st ‘𝑎) ∈ V | 
| 39 |   | sbcg 3059 | 
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) ∈ 𝐵 ↔ (2nd
‘𝑎) ∈ 𝐵)) | 
| 40 | 38, 39 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵 ↔ (2nd ‘𝑎) ∈ 𝐵) | 
| 41 | 36, 40 | anbi12i 460 | 
. . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 ∈ 𝐴 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 42 | 35, 41 | bitri 184 | 
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ↔ ((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵)) | 
| 43 |   | sbceq2g 3106 | 
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 44 | 38, 43 | ax-mp 5 | 
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 45 | 42, 44 | anbi12i 460 | 
. . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥](𝑥 ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ [(1st ‘𝑎) / 𝑥]𝑧 = ⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 46 | 33, 34, 45 | 3bitri 206 | 
. . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦]((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ (((1st ‘𝑎) ∈ 𝐴 ∧ (2nd ‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) | 
| 47 |   | sbcan 3032 | 
. . . . . . . . . . . . . 14
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽))) | 
| 48 |   | sbcg 3059 | 
. . . . . . . . . . . . . . . 16
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) | 
| 49 | 23, 48 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) | 
| 50 |   | sbcan 3032 | 
. . . . . . . . . . . . . . . 16
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽)) | 
| 51 |   | sbcg 3059 | 
. . . . . . . . . . . . . . . . . 18
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼)) | 
| 52 | 23, 51 | ax-mp 5 | 
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ↔ 𝑥 = 𝐼) | 
| 53 |   | sbceq1g 3104 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑎) ∈ V → ([(2nd
‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽)) | 
| 54 | 23, 53 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . 18
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ ⦋(2nd
‘𝑎) / 𝑦⦌𝑦 = 𝐽) | 
| 55 |   | csbvarg 3112 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑎) ∈ V →
⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = (2nd ‘𝑎)) | 
| 56 | 23, 55 | ax-mp 5 | 
. . . . . . . . . . . . . . . . . . 19
⊢
⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = (2nd ‘𝑎) | 
| 57 | 56 | eqeq1i 2204 | 
. . . . . . . . . . . . . . . . . 18
⊢
(⦋(2nd ‘𝑎) / 𝑦⦌𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 58 | 54, 57 | bitri 184 | 
. . . . . . . . . . . . . . . . 17
⊢
([(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 59 | 52, 58 | anbi12i 460 | 
. . . . . . . . . . . . . . . 16
⊢
(([(2nd ‘𝑎) / 𝑦]𝑥 = 𝐼 ∧ [(2nd ‘𝑎) / 𝑦]𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 60 | 50, 59 | bitri 184 | 
. . . . . . . . . . . . . . 15
⊢
([(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽) ↔ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 61 | 49, 60 | anbi12i 460 | 
. . . . . . . . . . . . . 14
⊢
(([(2nd ‘𝑎) / 𝑦]𝑧 ∈ 𝐷 ∧ [(2nd ‘𝑎) / 𝑦](𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 62 | 47, 61 | bitri 184 | 
. . . . . . . . . . . . 13
⊢
([(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 63 | 62 | sbcbii 3049 | 
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ [(1st
‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 64 |   | sbcan 3032 | 
. . . . . . . . . . . 12
⊢
([(1st ‘𝑎) / 𝑥](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 65 |   | sbcg 3059 | 
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) | 
| 66 | 38, 65 | ax-mp 5 | 
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷) | 
| 67 |   | sbcan 3032 | 
. . . . . . . . . . . . . 14
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽)) | 
| 68 |   | sbceq1g 3104 | 
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼)) | 
| 69 | 38, 68 | ax-mp 5 | 
. . . . . . . . . . . . . . . 16
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ ⦋(1st
‘𝑎) / 𝑥⦌𝑥 = 𝐼) | 
| 70 |   | csbvarg 3112 | 
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑎) ∈ V →
⦋(1st ‘𝑎) / 𝑥⦌𝑥 = (1st ‘𝑎)) | 
| 71 | 38, 70 | ax-mp 5 | 
. . . . . . . . . . . . . . . . 17
⊢
⦋(1st ‘𝑎) / 𝑥⦌𝑥 = (1st ‘𝑎) | 
| 72 | 71 | eqeq1i 2204 | 
. . . . . . . . . . . . . . . 16
⊢
(⦋(1st ‘𝑎) / 𝑥⦌𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) | 
| 73 | 69, 72 | bitri 184 | 
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ↔ (1st ‘𝑎) = 𝐼) | 
| 74 |   | sbcg 3059 | 
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑎) ∈ V → ([(1st
‘𝑎) / 𝑥](2nd
‘𝑎) = 𝐽 ↔ (2nd
‘𝑎) = 𝐽)) | 
| 75 | 38, 74 | ax-mp 5 | 
. . . . . . . . . . . . . . 15
⊢
([(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽 ↔ (2nd ‘𝑎) = 𝐽) | 
| 76 | 73, 75 | anbi12i 460 | 
. . . . . . . . . . . . . 14
⊢
(([(1st ‘𝑎) / 𝑥]𝑥 = 𝐼 ∧ [(1st ‘𝑎) / 𝑥](2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 77 | 67, 76 | bitri 184 | 
. . . . . . . . . . . . 13
⊢
([(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽) ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) | 
| 78 | 66, 77 | anbi12i 460 | 
. . . . . . . . . . . 12
⊢
(([(1st ‘𝑎) / 𝑥]𝑧 ∈ 𝐷 ∧ [(1st ‘𝑎) / 𝑥](𝑥 = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 79 | 63, 64, 78 | 3bitri 206 | 
. . . . . . . . . . 11
⊢
([(1st ‘𝑎) / 𝑥][(2nd ‘𝑎) / 𝑦](𝑧 ∈ 𝐷 ∧ (𝑥 = 𝐼 ∧ 𝑦 = 𝐽)) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 80 | 18, 46, 79 | 3bitr3g 222 | 
. . . . . . . . . 10
⊢ (𝜑 → ((((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 81 | 80 | anbi2d 464 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) | 
| 82 | 15, 81 | bitrid 192 | 
. . . . . . . 8
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))))) | 
| 83 |   | xpss 4771 | 
. . . . . . . . . . . 12
⊢ (𝑋 × 𝑌) ⊆ (V × V) | 
| 84 |   | simprr 531 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 = 〈𝐼, 𝐽〉) | 
| 85 | 8 | adantrr 479 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 〈𝐼, 𝐽〉 ∈ (𝑋 × 𝑌)) | 
| 86 | 84, 85 | eqeltrd 2273 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (𝑋 × 𝑌)) | 
| 87 | 83, 86 | sselid 3181 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) → 𝑎 ∈ (V × V)) | 
| 88 | 87 | ex 115 | 
. . . . . . . . . 10
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) → 𝑎 ∈ (V × V))) | 
| 89 | 88 | pm4.71rd 394 | 
. . . . . . . . 9
⊢ (𝜑 → ((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)))) | 
| 90 |   | eqop 6235 | 
. . . . . . . . . . 11
⊢ (𝑎 ∈ (V × V) →
(𝑎 = 〈𝐼, 𝐽〉 ↔ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) | 
| 91 | 90 | anbi2d 464 | 
. . . . . . . . . 10
⊢ (𝑎 ∈ (V × V) →
((𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉) ↔ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 92 | 91 | pm5.32i 454 | 
. . . . . . . . 9
⊢ ((𝑎 ∈ (V × V) ∧
(𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)) ↔ (𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽)))) | 
| 93 | 89, 92 | bitr2di 197 | 
. . . . . . . 8
⊢ (𝜑 → ((𝑎 ∈ (V × V) ∧ (𝑧 ∈ 𝐷 ∧ ((1st ‘𝑎) = 𝐼 ∧ (2nd ‘𝑎) = 𝐽))) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 94 | 82, 93 | bitrd 188 | 
. . . . . . 7
⊢ (𝜑 → (((𝑎 ∈ (V × V) ∧ ((1st
‘𝑎) ∈ 𝐴 ∧ (2nd
‘𝑎) ∈ 𝐵)) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 95 | 14, 94 | bitrid 192 | 
. . . . . 6
⊢ (𝜑 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉))) | 
| 96 | 95 | opabbidv 4099 | 
. . . . 5
⊢ (𝜑 → {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)}) | 
| 97 |   | df-mpo 5927 | 
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 98 | 3, 97 | eqtri 2217 | 
. . . . . . 7
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 99 | 98 | cnveqi 4841 | 
. . . . . 6
⊢ ◡𝐹 = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | 
| 100 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑎 ∈ (𝐴 × 𝐵) | 
| 101 |   | nfcsb1v 3117 | 
. . . . . . . . 9
⊢
Ⅎ𝑥⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 102 | 101 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 103 | 100, 102 | nfan 1579 | 
. . . . . . 7
⊢
Ⅎ𝑥(𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 104 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑦 𝑎 ∈ (𝐴 × 𝐵) | 
| 105 |   | nfcv 2339 | 
. . . . . . . . . 10
⊢
Ⅎ𝑦(1st ‘𝑎) | 
| 106 |   | nfcsb1v 3117 | 
. . . . . . . . . 10
⊢
Ⅎ𝑦⦋(2nd ‘𝑎) / 𝑦⦌𝐶 | 
| 107 | 105, 106 | nfcsb 3122 | 
. . . . . . . . 9
⊢
Ⅎ𝑦⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 108 | 107 | nfeq2 2351 | 
. . . . . . . 8
⊢
Ⅎ𝑦 𝑧 =
⦋(1st ‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 | 
| 109 | 104, 108 | nfan 1579 | 
. . . . . . 7
⊢
Ⅎ𝑦(𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) | 
| 110 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵))) | 
| 111 |   | opelxp 4693 | 
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | 
| 112 | 110, 111 | bitrdi 196 | 
. . . . . . . 8
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑎 ∈ (𝐴 × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) | 
| 113 |   | csbopeq1a 6246 | 
. . . . . . . . 9
⊢ (𝑎 = 〈𝑥, 𝑦〉 → ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 = 𝐶) | 
| 114 | 113 | eqeq2d 2208 | 
. . . . . . . 8
⊢ (𝑎 = 〈𝑥, 𝑦〉 → (𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶 ↔ 𝑧 = 𝐶)) | 
| 115 | 112, 114 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑎 = 〈𝑥, 𝑦〉 → ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶))) | 
| 116 |   | xpss 4771 | 
. . . . . . . . 9
⊢ (𝐴 × 𝐵) ⊆ (V × V) | 
| 117 | 116 | sseli 3179 | 
. . . . . . . 8
⊢ (𝑎 ∈ (𝐴 × 𝐵) → 𝑎 ∈ (V × V)) | 
| 118 | 117 | adantr 276 | 
. . . . . . 7
⊢ ((𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶) → 𝑎 ∈ (V × V)) | 
| 119 | 103, 109,
115, 118 | cnvoprab 6292 | 
. . . . . 6
⊢ ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} | 
| 120 | 99, 119 | eqtri 2217 | 
. . . . 5
⊢ ◡𝐹 = {〈𝑧, 𝑎〉 ∣ (𝑎 ∈ (𝐴 × 𝐵) ∧ 𝑧 = ⦋(1st
‘𝑎) / 𝑥⦌⦋(2nd
‘𝑎) / 𝑦⦌𝐶)} | 
| 121 |   | df-mpt 4096 | 
. . . . 5
⊢ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) = {〈𝑧, 𝑎〉 ∣ (𝑧 ∈ 𝐷 ∧ 𝑎 = 〈𝐼, 𝐽〉)} | 
| 122 | 96, 120, 121 | 3eqtr4g 2254 | 
. . . 4
⊢ (𝜑 → ◡𝐹 = (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉)) | 
| 123 | 122 | fneq1d 5348 | 
. . 3
⊢ (𝜑 → (◡𝐹 Fn 𝐷 ↔ (𝑧 ∈ 𝐷 ↦ 〈𝐼, 𝐽〉) Fn 𝐷)) | 
| 124 | 12, 123 | mpbird 167 | 
. 2
⊢ (𝜑 → ◡𝐹 Fn 𝐷) | 
| 125 |   | dff1o4 5512 | 
. 2
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ◡𝐹 Fn 𝐷)) | 
| 126 | 5, 124, 125 | sylanbrc 417 | 
1
⊢ (𝜑 → 𝐹:(𝐴 × 𝐵)–1-1-onto→𝐷) |