ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq4sgn GIF version

Theorem sincosq4sgn 12923
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 8801 . . . . 5 3 ∈ ℝ
2 halfpire 12886 . . . . 5 (π / 2) ∈ ℝ
31, 2remulcli 7787 . . . 4 (3 · (π / 2)) ∈ ℝ
43rexri 7830 . . 3 (3 · (π / 2)) ∈ ℝ*
5 2re 8797 . . . . 5 2 ∈ ℝ
6 pire 12880 . . . . 5 π ∈ ℝ
75, 6remulcli 7787 . . . 4 (2 · π) ∈ ℝ
87rexri 7830 . . 3 (2 · π) ∈ ℝ*
9 elioo2 9711 . . 3 (((3 · (π / 2)) ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π))))
104, 8, 9mp2an 422 . 2 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)))
11 df-3 8787 . . . . . . . . . . . 12 3 = (2 + 1)
1211oveq1i 5784 . . . . . . . . . . 11 (3 · (π / 2)) = ((2 + 1) · (π / 2))
13 2cn 8798 . . . . . . . . . . . 12 2 ∈ ℂ
14 ax-1cn 7720 . . . . . . . . . . . 12 1 ∈ ℂ
152recni 7785 . . . . . . . . . . . 12 (π / 2) ∈ ℂ
1613, 14, 15adddiri 7784 . . . . . . . . . . 11 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
176recni 7785 . . . . . . . . . . . . 13 π ∈ ℂ
18 2ap0 8820 . . . . . . . . . . . . 13 2 # 0
1917, 13, 18divcanap2i 8522 . . . . . . . . . . . 12 (2 · (π / 2)) = π
2015mulid2i 7776 . . . . . . . . . . . 12 (1 · (π / 2)) = (π / 2)
2119, 20oveq12i 5786 . . . . . . . . . . 11 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2212, 16, 213eqtrri 2165 . . . . . . . . . 10 (π + (π / 2)) = (3 · (π / 2))
2322breq1i 3936 . . . . . . . . 9 ((π + (π / 2)) < 𝐴 ↔ (3 · (π / 2)) < 𝐴)
24 ltaddsub 8205 . . . . . . . . . 10 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
256, 2, 24mp3an12 1305 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
2623, 25bitr3id 193 . . . . . . . 8 (𝐴 ∈ ℝ → ((3 · (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
27 ltsubadd 8201 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
282, 3, 27mp3an23 1307 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
29 df-4 8788 . . . . . . . . . . . . 13 4 = (3 + 1)
3029oveq1i 5784 . . . . . . . . . . . 12 (4 · (π / 2)) = ((3 + 1) · (π / 2))
311recni 7785 . . . . . . . . . . . . 13 3 ∈ ℂ
3231, 14, 15adddiri 7784 . . . . . . . . . . . 12 ((3 + 1) · (π / 2)) = ((3 · (π / 2)) + (1 · (π / 2)))
3320oveq2i 5785 . . . . . . . . . . . 12 ((3 · (π / 2)) + (1 · (π / 2))) = ((3 · (π / 2)) + (π / 2))
3430, 32, 333eqtrri 2165 . . . . . . . . . . 11 ((3 · (π / 2)) + (π / 2)) = (4 · (π / 2))
35 4cn 8805 . . . . . . . . . . . . 13 4 ∈ ℂ
3613, 18pm3.2i 270 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 # 0)
37 div12ap 8461 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (4 · (π / 2)) = (π · (4 / 2)))
3835, 17, 36, 37mp3an 1315 . . . . . . . . . . . 12 (4 · (π / 2)) = (π · (4 / 2))
39 4d2e2 8887 . . . . . . . . . . . . . 14 (4 / 2) = 2
4039oveq2i 5785 . . . . . . . . . . . . 13 (π · (4 / 2)) = (π · 2)
4117, 13mulcomi 7779 . . . . . . . . . . . . 13 (π · 2) = (2 · π)
4240, 41eqtri 2160 . . . . . . . . . . . 12 (π · (4 / 2)) = (2 · π)
4338, 42eqtri 2160 . . . . . . . . . . 11 (4 · (π / 2)) = (2 · π)
4434, 43eqtri 2160 . . . . . . . . . 10 ((3 · (π / 2)) + (π / 2)) = (2 · π)
4544breq2i 3937 . . . . . . . . 9 (𝐴 < ((3 · (π / 2)) + (π / 2)) ↔ 𝐴 < (2 · π))
4628, 45syl6rbb 196 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (2 · π) ↔ (𝐴 − (π / 2)) < (3 · (π / 2))))
4726, 46anbi12d 464 . . . . . . 7 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) ↔ (π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
48 resubcl 8033 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
492, 48mpan2 421 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
506rexri 7830 . . . . . . . . . . 11 π ∈ ℝ*
51 elioo2 9711 . . . . . . . . . . 11 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
5250, 4, 51mp2an 422 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))))
53 sincosq3sgn 12922 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5452, 53sylbir 134 . . . . . . . . 9 (((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5549, 54syl3an1 1249 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
56553expib 1184 . . . . . . 7 (𝐴 ∈ ℝ → ((π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5747, 56sylbid 149 . . . . . 6 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5849resincld 11437 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
5958lt0neg1d 8284 . . . . . . 7 (𝐴 ∈ ℝ → ((sin‘(𝐴 − (π / 2))) < 0 ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
6059anbi1d 460 . . . . . 6 (𝐴 ∈ ℝ → (((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
6157, 60sylibd 148 . . . . 5 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
62 recn 7760 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
63 pncan3 7977 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6415, 62, 63sylancr 410 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6564fveq2d 5425 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
6649recnd 7801 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
67 coshalfpip 12916 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6866, 67syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6965, 68eqtr3d 2174 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
7069breq2d 3941 . . . . . 6 (𝐴 ∈ ℝ → (0 < (cos‘𝐴) ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
7164fveq2d 5425 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
72 sinhalfpip 12914 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7366, 72syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7471, 73eqtr3d 2174 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
7574breq1d 3939 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
7670, 75anbi12d 464 . . . . 5 (𝐴 ∈ ℝ → ((0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
7761, 76sylibrd 168 . . . 4 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0)))
78773impib 1179 . . 3 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0))
7978ancomd 265 . 2 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
8010, 79sylbi 120 1 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7625  cr 7626  0cc0 7627  1c1 7628   + caddc 7630   · cmul 7632  *cxr 7806   < clt 7807  cmin 7940  -cneg 7941   # cap 8350   / cdiv 8439  2c2 8778  3c3 8779  4c4 8780  (,)cioo 9678  sincsin 11357  cosccos 11358  πcpi 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator