ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq4sgn GIF version

Theorem sincosq4sgn 15301
Description: The signs of the sine and cosine functions in the fourth quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq4sgn (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))

Proof of Theorem sincosq4sgn
StepHypRef Expression
1 3re 9110 . . . . 5 3 ∈ ℝ
2 halfpire 15264 . . . . 5 (π / 2) ∈ ℝ
31, 2remulcli 8086 . . . 4 (3 · (π / 2)) ∈ ℝ
43rexri 8130 . . 3 (3 · (π / 2)) ∈ ℝ*
5 2re 9106 . . . . 5 2 ∈ ℝ
6 pire 15258 . . . . 5 π ∈ ℝ
75, 6remulcli 8086 . . . 4 (2 · π) ∈ ℝ
87rexri 8130 . . 3 (2 · π) ∈ ℝ*
9 elioo2 10043 . . 3 (((3 · (π / 2)) ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π))))
104, 8, 9mp2an 426 . 2 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) ↔ (𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)))
11 df-3 9096 . . . . . . . . . . . 12 3 = (2 + 1)
1211oveq1i 5954 . . . . . . . . . . 11 (3 · (π / 2)) = ((2 + 1) · (π / 2))
13 2cn 9107 . . . . . . . . . . . 12 2 ∈ ℂ
14 ax-1cn 8018 . . . . . . . . . . . 12 1 ∈ ℂ
152recni 8084 . . . . . . . . . . . 12 (π / 2) ∈ ℂ
1613, 14, 15adddiri 8083 . . . . . . . . . . 11 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
176recni 8084 . . . . . . . . . . . . 13 π ∈ ℂ
18 2ap0 9129 . . . . . . . . . . . . 13 2 # 0
1917, 13, 18divcanap2i 8828 . . . . . . . . . . . 12 (2 · (π / 2)) = π
2015mullidi 8075 . . . . . . . . . . . 12 (1 · (π / 2)) = (π / 2)
2119, 20oveq12i 5956 . . . . . . . . . . 11 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2212, 16, 213eqtrri 2231 . . . . . . . . . 10 (π + (π / 2)) = (3 · (π / 2))
2322breq1i 4051 . . . . . . . . 9 ((π + (π / 2)) < 𝐴 ↔ (3 · (π / 2)) < 𝐴)
24 ltaddsub 8509 . . . . . . . . . 10 ((π ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
256, 2, 24mp3an12 1340 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π + (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
2623, 25bitr3id 194 . . . . . . . 8 (𝐴 ∈ ℝ → ((3 · (π / 2)) < 𝐴 ↔ π < (𝐴 − (π / 2))))
27 ltsubadd 8505 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
282, 3, 27mp3an23 1342 . . . . . . . . 9 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < (3 · (π / 2)) ↔ 𝐴 < ((3 · (π / 2)) + (π / 2))))
29 df-4 9097 . . . . . . . . . . . . 13 4 = (3 + 1)
3029oveq1i 5954 . . . . . . . . . . . 12 (4 · (π / 2)) = ((3 + 1) · (π / 2))
311recni 8084 . . . . . . . . . . . . 13 3 ∈ ℂ
3231, 14, 15adddiri 8083 . . . . . . . . . . . 12 ((3 + 1) · (π / 2)) = ((3 · (π / 2)) + (1 · (π / 2)))
3320oveq2i 5955 . . . . . . . . . . . 12 ((3 · (π / 2)) + (1 · (π / 2))) = ((3 · (π / 2)) + (π / 2))
3430, 32, 333eqtrri 2231 . . . . . . . . . . 11 ((3 · (π / 2)) + (π / 2)) = (4 · (π / 2))
35 4cn 9114 . . . . . . . . . . . . 13 4 ∈ ℂ
3613, 18pm3.2i 272 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 # 0)
37 div12ap 8767 . . . . . . . . . . . . 13 ((4 ∈ ℂ ∧ π ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (4 · (π / 2)) = (π · (4 / 2)))
3835, 17, 36, 37mp3an 1350 . . . . . . . . . . . 12 (4 · (π / 2)) = (π · (4 / 2))
39 4d2e2 9197 . . . . . . . . . . . . . 14 (4 / 2) = 2
4039oveq2i 5955 . . . . . . . . . . . . 13 (π · (4 / 2)) = (π · 2)
4117, 13mulcomi 8078 . . . . . . . . . . . . 13 (π · 2) = (2 · π)
4240, 41eqtri 2226 . . . . . . . . . . . 12 (π · (4 / 2)) = (2 · π)
4338, 42eqtri 2226 . . . . . . . . . . 11 (4 · (π / 2)) = (2 · π)
4434, 43eqtri 2226 . . . . . . . . . 10 ((3 · (π / 2)) + (π / 2)) = (2 · π)
4544breq2i 4052 . . . . . . . . 9 (𝐴 < ((3 · (π / 2)) + (π / 2)) ↔ 𝐴 < (2 · π))
4628, 45bitr2di 197 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (2 · π) ↔ (𝐴 − (π / 2)) < (3 · (π / 2))))
4726, 46anbi12d 473 . . . . . . 7 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) ↔ (π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
48 resubcl 8336 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
492, 48mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
506rexri 8130 . . . . . . . . . . 11 π ∈ ℝ*
51 elioo2 10043 . . . . . . . . . . 11 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2)))))
5250, 4, 51mp2an 426 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))))
53 sincosq3sgn 15300 . . . . . . . . . 10 ((𝐴 − (π / 2)) ∈ (π(,)(3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5452, 53sylbir 135 . . . . . . . . 9 (((𝐴 − (π / 2)) ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
5549, 54syl3an1 1283 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0))
56553expib 1209 . . . . . . 7 (𝐴 ∈ ℝ → ((π < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < (3 · (π / 2))) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5747, 56sylbid 150 . . . . . 6 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0)))
5849resincld 12034 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
5958lt0neg1d 8588 . . . . . . 7 (𝐴 ∈ ℝ → ((sin‘(𝐴 − (π / 2))) < 0 ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
6059anbi1d 465 . . . . . 6 (𝐴 ∈ ℝ → (((sin‘(𝐴 − (π / 2))) < 0 ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
6157, 60sylibd 149 . . . . 5 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
62 recn 8058 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
63 pncan3 8280 . . . . . . . . . 10 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6415, 62, 63sylancr 414 . . . . . . . . 9 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
6564fveq2d 5580 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
6649recnd 8101 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
67 coshalfpip 15294 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6866, 67syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6965, 68eqtr3d 2240 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
7069breq2d 4056 . . . . . 6 (𝐴 ∈ ℝ → (0 < (cos‘𝐴) ↔ 0 < -(sin‘(𝐴 − (π / 2)))))
7164fveq2d 5580 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
72 sinhalfpip 15292 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7366, 72syl 14 . . . . . . . 8 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
7471, 73eqtr3d 2240 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
7574breq1d 4054 . . . . . 6 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
7670, 75anbi12d 473 . . . . 5 (𝐴 ∈ ℝ → ((0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0) ↔ (0 < -(sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0)))
7761, 76sylibrd 169 . . . 4 (𝐴 ∈ ℝ → (((3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0)))
78773impib 1204 . . 3 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → (0 < (cos‘𝐴) ∧ (sin‘𝐴) < 0))
7978ancomd 267 . 2 ((𝐴 ∈ ℝ ∧ (3 · (π / 2)) < 𝐴𝐴 < (2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
8010, 79sylbi 121 1 (𝐴 ∈ ((3 · (π / 2))(,)(2 · π)) → ((sin‘𝐴) < 0 ∧ 0 < (cos‘𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  cc 7923  cr 7924  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930  *cxr 8106   < clt 8107  cmin 8243  -cneg 8244   # cap 8654   / cdiv 8745  2c2 9087  3c3 9088  4c4 9089  (,)cioo 10010  sincsin 11955  cosccos 11956  πcpi 11958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045  ax-pre-suploc 8046  ax-addf 8047  ax-mulf 8048
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-disj 4022  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-map 6737  df-pm 6738  df-en 6828  df-dom 6829  df-fin 6830  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-xneg 9894  df-xadd 9895  df-ioo 10014  df-ioc 10015  df-ico 10016  df-icc 10017  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-bc 10893  df-ihash 10921  df-shft 11126  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665  df-ef 11959  df-sin 11961  df-cos 11962  df-pi 11964  df-rest 13073  df-topgen 13092  df-psmet 14305  df-xmet 14306  df-met 14307  df-bl 14308  df-mopn 14309  df-top 14470  df-topon 14483  df-bases 14515  df-ntr 14568  df-cn 14660  df-cnp 14661  df-tx 14725  df-cncf 15043  df-limced 15128  df-dvap 15129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator