ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  br0 GIF version

Theorem br0 4027
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.)
Assertion
Ref Expression
br0 ¬ 𝐴𝐵

Proof of Theorem br0
StepHypRef Expression
1 noel 3411 . 2 ¬ ⟨𝐴, 𝐵⟩ ∈ ∅
2 df-br 3980 . 2 (𝐴𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ∅)
31, 2mtbir 661 1 ¬ 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2135  c0 3407  cop 3576   class class class wbr 3979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-v 2726  df-dif 3116  df-nul 3408  df-br 3980
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator