Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > br0 | GIF version |
Description: The empty binary relation never holds. (Contributed by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
br0 | ⊢ ¬ 𝐴∅𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3411 | . 2 ⊢ ¬ 〈𝐴, 𝐵〉 ∈ ∅ | |
2 | df-br 3980 | . 2 ⊢ (𝐴∅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ ∅) | |
3 | 1, 2 | mtbir 661 | 1 ⊢ ¬ 𝐴∅𝐵 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2135 ∅c0 3407 〈cop 3576 class class class wbr 3979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-dif 3116 df-nul 3408 df-br 3980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |