| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brab1 | GIF version | ||
| Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| Ref | Expression |
|---|---|
| brab1 | ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | breq1 4036 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝐴 ↔ 𝑦𝑅𝐴)) | |
| 3 | breq1 4036 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦𝑅𝐴 ↔ 𝑥𝑅𝐴)) | |
| 4 | 2, 3 | sbcie2g 3023 | . . 3 ⊢ (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴) |
| 6 | df-sbc 2990 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | |
| 7 | 5, 6 | bitr3i 186 | 1 ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2167 {cab 2182 Vcvv 2763 [wsbc 2989 class class class wbr 4033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |