![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brab1 | GIF version |
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
Ref | Expression |
---|---|
brab1 | ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
2 | breq1 4032 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝐴 ↔ 𝑦𝑅𝐴)) | |
3 | breq1 4032 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦𝑅𝐴 ↔ 𝑥𝑅𝐴)) | |
4 | 2, 3 | sbcie2g 3019 | . . 3 ⊢ (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴)) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴) |
6 | df-sbc 2986 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | |
7 | 5, 6 | bitr3i 186 | 1 ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∈ wcel 2164 {cab 2179 Vcvv 2760 [wsbc 2985 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |