| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brab1 | GIF version | ||
| Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.) |
| Ref | Expression |
|---|---|
| brab1 | ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | breq1 4085 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧𝑅𝐴 ↔ 𝑦𝑅𝐴)) | |
| 3 | breq1 4085 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦𝑅𝐴 ↔ 𝑥𝑅𝐴)) | |
| 4 | 2, 3 | sbcie2g 3062 | . . 3 ⊢ (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥𝑅𝐴) |
| 6 | df-sbc 3029 | . 2 ⊢ ([𝑥 / 𝑧]𝑧𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) | |
| 7 | 5, 6 | bitr3i 186 | 1 ⊢ (𝑥𝑅𝐴 ↔ 𝑥 ∈ {𝑧 ∣ 𝑧𝑅𝐴}) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2200 {cab 2215 Vcvv 2799 [wsbc 3028 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |