ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab1 GIF version

Theorem brab1 3943
Description: Relationship between a binary relation and a class abstraction. (Contributed by Andrew Salmon, 8-Jul-2011.)
Assertion
Ref Expression
brab1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Distinct variable groups:   𝑧,𝐴   𝑧,𝑅
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)

Proof of Theorem brab1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2661 . . 3 𝑥 ∈ V
2 breq1 3900 . . . 4 (𝑧 = 𝑦 → (𝑧𝑅𝐴𝑦𝑅𝐴))
3 breq1 3900 . . . 4 (𝑦 = 𝑥 → (𝑦𝑅𝐴𝑥𝑅𝐴))
42, 3sbcie2g 2912 . . 3 (𝑥 ∈ V → ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴))
51, 4ax-mp 5 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥𝑅𝐴)
6 df-sbc 2881 . 2 ([𝑥 / 𝑧]𝑧𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
75, 6bitr3i 185 1 (𝑥𝑅𝐴𝑥 ∈ {𝑧𝑧𝑅𝐴})
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1463  {cab 2101  Vcvv 2658  [wsbc 2880   class class class wbr 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-sbc 2881  df-un 3043  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator