ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12 GIF version

Theorem breq12 4049
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
breq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breq12
StepHypRef Expression
1 breq1 4047 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
2 breq2 4048 . 2 (𝐶 = 𝐷 → (𝐵𝑅𝐶𝐵𝑅𝐷))
31, 2sylan9bb 462 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373   class class class wbr 4044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045
This theorem is referenced by:  breq12i  4053  breq12d  4057  breqan12d  4060  posng  4747  isopolem  5891  poxp  6318  rbropapd  6328  ecopover  6720  ecopoverg  6723  ltdcnq  7510  recexpr  7751  ltresr  7952  reapval  8649  ltxr  9897  xrltnr  9901  xrltnsym  9915  xrlttr  9917  xrltso  9918  xrlttri3  9919  xposdif  10004  f1olecpbl  13145  exmidsbthrlem  15961
  Copyright terms: Public domain W3C validator