ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12 GIF version

Theorem breq12 3994
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
breq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breq12
StepHypRef Expression
1 breq1 3992 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
2 breq2 3993 . 2 (𝐶 = 𝐷 → (𝐵𝑅𝐶𝐵𝑅𝐷))
31, 2sylan9bb 459 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348   class class class wbr 3989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990
This theorem is referenced by:  breq12i  3998  breq12d  4002  breqan12d  4005  posng  4683  isopolem  5801  poxp  6211  rbropapd  6221  ecopover  6611  ecopoverg  6614  ltdcnq  7359  recexpr  7600  ltresr  7801  reapval  8495  ltxr  9732  xrltnr  9736  xrltnsym  9750  xrlttr  9752  xrltso  9753  xrlttri3  9754  xposdif  9839  exmidsbthrlem  14054
  Copyright terms: Public domain W3C validator