ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq12 GIF version

Theorem breq12 4038
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.)
Assertion
Ref Expression
breq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))

Proof of Theorem breq12
StepHypRef Expression
1 breq1 4036 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
2 breq2 4037 . 2 (𝐶 = 𝐷 → (𝐵𝑅𝐶𝐵𝑅𝐷))
31, 2sylan9bb 462 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝑅𝐶𝐵𝑅𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  breq12i  4042  breq12d  4046  breqan12d  4049  posng  4735  isopolem  5869  poxp  6290  rbropapd  6300  ecopover  6692  ecopoverg  6695  ltdcnq  7464  recexpr  7705  ltresr  7906  reapval  8603  ltxr  9850  xrltnr  9854  xrltnsym  9868  xrlttr  9870  xrltso  9871  xrlttri3  9872  xposdif  9957  f1olecpbl  12956  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator