![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq12 | GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4032 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | breq2 4033 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
3 | 1, 2 | sylan9bb 462 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: breq12i 4038 breq12d 4042 breqan12d 4045 posng 4731 isopolem 5865 poxp 6285 rbropapd 6295 ecopover 6687 ecopoverg 6690 ltdcnq 7457 recexpr 7698 ltresr 7899 reapval 8595 ltxr 9841 xrltnr 9845 xrltnsym 9859 xrlttr 9861 xrltso 9862 xrlttri3 9863 xposdif 9948 f1olecpbl 12896 exmidsbthrlem 15512 |
Copyright terms: Public domain | W3C validator |