| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq1 4046 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 class class class wbr 4043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 |
| This theorem is referenced by: eqbrtri 4064 brtpos0 6337 euen1 6893 euen1b 6894 2dom 6896 infglbti 7126 pr2nelem 7298 caucvgprprlemnbj 7805 caucvgprprlemmu 7807 caucvgprprlemaddq 7820 caucvgprprlem1 7821 gt0srpr 7860 caucvgsr 7914 mappsrprg 7916 map2psrprg 7917 pitonnlem1 7957 pitoregt0 7961 axprecex 7992 axpre-mulgt0 7999 axcaucvglemres 8011 lt0neg1 8540 le0neg1 8542 reclt1 8968 addltmul 9273 eluz2b1 9721 nn01to3 9737 xlt0neg1 9959 xle0neg1 9961 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 bernneq 10803 cbvsum 11642 expcnv 11786 cbvprod 11840 oddge22np1 12163 nn0o1gt2 12187 isprm3 12411 dvdsnprmd 12418 pw2dvdslemn 12458 txmetcnp 14961 sincosq1sgn 15269 sincosq3sgn 15271 sincosq4sgn 15272 logrpap0b 15319 gausslemma2dlem3 15511 |
| Copyright terms: Public domain | W3C validator |