![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq1i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq1 3896 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1312 class class class wbr 3893 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 |
This theorem is referenced by: eqbrtri 3912 brtpos0 6101 euen1 6648 euen1b 6649 2dom 6651 infglbti 6862 pr2nelem 6994 caucvgprprlemnbj 7443 caucvgprprlemmu 7445 caucvgprprlemaddq 7458 caucvgprprlem1 7459 gt0srpr 7485 caucvgsr 7538 pitonnlem1 7574 pitoregt0 7578 axprecex 7609 axpre-mulgt0 7616 axcaucvglemres 7628 lt0neg1 8143 le0neg1 8145 reclt1 8558 addltmul 8854 eluz2b1 9291 nn01to3 9305 xlt0neg1 9508 xle0neg1 9510 iccshftr 9664 iccshftl 9666 iccdil 9668 icccntr 9670 bernneq 10299 cbvsum 11015 expcnv 11159 oddge22np1 11420 nn0o1gt2 11444 isprm3 11639 dvdsnprmd 11646 pw2dvdslemn 11682 txmetcnp 12501 |
Copyright terms: Public domain | W3C validator |