| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq1 4037 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4034 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 |
| This theorem is referenced by: eqbrtri 4055 brtpos0 6319 euen1 6870 euen1b 6871 2dom 6873 infglbti 7100 pr2nelem 7272 caucvgprprlemnbj 7779 caucvgprprlemmu 7781 caucvgprprlemaddq 7794 caucvgprprlem1 7795 gt0srpr 7834 caucvgsr 7888 mappsrprg 7890 map2psrprg 7891 pitonnlem1 7931 pitoregt0 7935 axprecex 7966 axpre-mulgt0 7973 axcaucvglemres 7985 lt0neg1 8514 le0neg1 8516 reclt1 8942 addltmul 9247 eluz2b1 9694 nn01to3 9710 xlt0neg1 9932 xle0neg1 9934 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 bernneq 10771 cbvsum 11544 expcnv 11688 cbvprod 11742 oddge22np1 12065 nn0o1gt2 12089 isprm3 12313 dvdsnprmd 12320 pw2dvdslemn 12360 txmetcnp 14862 sincosq1sgn 15170 sincosq3sgn 15172 sincosq4sgn 15173 logrpap0b 15220 gausslemma2dlem3 15412 |
| Copyright terms: Public domain | W3C validator |