ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq1i GIF version

Theorem breq1i 3989
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq1i (𝐴𝑅𝐶𝐵𝑅𝐶)

Proof of Theorem breq1i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq1 3985 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
31, 2ax-mp 5 1 (𝐴𝑅𝐶𝐵𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343   class class class wbr 3982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983
This theorem is referenced by:  eqbrtri  4003  brtpos0  6220  euen1  6768  euen1b  6769  2dom  6771  infglbti  6990  pr2nelem  7147  caucvgprprlemnbj  7634  caucvgprprlemmu  7636  caucvgprprlemaddq  7649  caucvgprprlem1  7650  gt0srpr  7689  caucvgsr  7743  mappsrprg  7745  map2psrprg  7746  pitonnlem1  7786  pitoregt0  7790  axprecex  7821  axpre-mulgt0  7828  axcaucvglemres  7840  lt0neg1  8366  le0neg1  8368  reclt1  8791  addltmul  9093  eluz2b1  9539  nn01to3  9555  xlt0neg1  9774  xle0neg1  9776  iccshftr  9930  iccshftl  9932  iccdil  9934  icccntr  9936  bernneq  10575  cbvsum  11301  expcnv  11445  cbvprod  11499  oddge22np1  11818  nn0o1gt2  11842  isprm3  12050  dvdsnprmd  12057  pw2dvdslemn  12097  txmetcnp  13168  sincosq1sgn  13397  sincosq3sgn  13399  sincosq4sgn  13400  logrpap0b  13447
  Copyright terms: Public domain W3C validator