| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq1 4047 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 class class class wbr 4044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 |
| This theorem is referenced by: eqbrtri 4065 brtpos0 6338 euen1 6894 euen1b 6895 2dom 6897 infglbti 7127 pr2nelem 7299 caucvgprprlemnbj 7806 caucvgprprlemmu 7808 caucvgprprlemaddq 7821 caucvgprprlem1 7822 gt0srpr 7861 caucvgsr 7915 mappsrprg 7917 map2psrprg 7918 pitonnlem1 7958 pitoregt0 7962 axprecex 7993 axpre-mulgt0 8000 axcaucvglemres 8012 lt0neg1 8541 le0neg1 8543 reclt1 8969 addltmul 9274 eluz2b1 9722 nn01to3 9738 xlt0neg1 9960 xle0neg1 9962 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 bernneq 10805 cbvsum 11671 expcnv 11815 cbvprod 11869 oddge22np1 12192 nn0o1gt2 12216 isprm3 12440 dvdsnprmd 12447 pw2dvdslemn 12487 txmetcnp 14990 sincosq1sgn 15298 sincosq3sgn 15300 sincosq4sgn 15301 logrpap0b 15348 gausslemma2dlem3 15540 |
| Copyright terms: Public domain | W3C validator |