| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq1 4062 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: eqbrtri 4080 brtpos0 6361 euen1 6917 euen1b 6918 2dom 6921 infglbti 7153 pr2nelem 7325 pr2cv2 7330 caucvgprprlemnbj 7841 caucvgprprlemmu 7843 caucvgprprlemaddq 7856 caucvgprprlem1 7857 gt0srpr 7896 caucvgsr 7950 mappsrprg 7952 map2psrprg 7953 pitonnlem1 7993 pitoregt0 7997 axprecex 8028 axpre-mulgt0 8035 axcaucvglemres 8047 lt0neg1 8576 le0neg1 8578 reclt1 9004 addltmul 9309 eluz2b1 9757 nn01to3 9773 xlt0neg1 9995 xle0neg1 9997 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 bernneq 10842 cbvsum 11786 expcnv 11930 cbvprod 11984 oddge22np1 12307 nn0o1gt2 12331 isprm3 12555 dvdsnprmd 12562 pw2dvdslemn 12602 txmetcnp 15105 sincosq1sgn 15413 sincosq3sgn 15415 sincosq4sgn 15416 logrpap0b 15463 gausslemma2dlem3 15655 |
| Copyright terms: Public domain | W3C validator |