Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > breq1i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq1 3985 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 class class class wbr 3982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 |
This theorem is referenced by: eqbrtri 4003 brtpos0 6220 euen1 6768 euen1b 6769 2dom 6771 infglbti 6990 pr2nelem 7147 caucvgprprlemnbj 7634 caucvgprprlemmu 7636 caucvgprprlemaddq 7649 caucvgprprlem1 7650 gt0srpr 7689 caucvgsr 7743 mappsrprg 7745 map2psrprg 7746 pitonnlem1 7786 pitoregt0 7790 axprecex 7821 axpre-mulgt0 7828 axcaucvglemres 7840 lt0neg1 8366 le0neg1 8368 reclt1 8791 addltmul 9093 eluz2b1 9539 nn01to3 9555 xlt0neg1 9774 xle0neg1 9776 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 bernneq 10575 cbvsum 11301 expcnv 11445 cbvprod 11499 oddge22np1 11818 nn0o1gt2 11842 isprm3 12050 dvdsnprmd 12057 pw2dvdslemn 12097 txmetcnp 13168 sincosq1sgn 13397 sincosq3sgn 13399 sincosq4sgn 13400 logrpap0b 13447 |
Copyright terms: Public domain | W3C validator |