![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq1i | GIF version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | breq1 4033 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 class class class wbr 4030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 |
This theorem is referenced by: eqbrtri 4051 brtpos0 6307 euen1 6858 euen1b 6859 2dom 6861 infglbti 7086 pr2nelem 7253 caucvgprprlemnbj 7755 caucvgprprlemmu 7757 caucvgprprlemaddq 7770 caucvgprprlem1 7771 gt0srpr 7810 caucvgsr 7864 mappsrprg 7866 map2psrprg 7867 pitonnlem1 7907 pitoregt0 7911 axprecex 7942 axpre-mulgt0 7949 axcaucvglemres 7961 lt0neg1 8489 le0neg1 8491 reclt1 8917 addltmul 9222 eluz2b1 9669 nn01to3 9685 xlt0neg1 9907 xle0neg1 9909 iccshftr 10063 iccshftl 10065 iccdil 10067 icccntr 10069 bernneq 10734 cbvsum 11506 expcnv 11650 cbvprod 11704 oddge22np1 12025 nn0o1gt2 12049 isprm3 12259 dvdsnprmd 12266 pw2dvdslemn 12306 txmetcnp 14697 sincosq1sgn 15002 sincosq3sgn 15004 sincosq4sgn 15005 logrpap0b 15052 gausslemma2dlem3 15220 |
Copyright terms: Public domain | W3C validator |