| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > breq1i | GIF version | ||
| Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
| Ref | Expression |
|---|---|
| breq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| breq1i | ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | breq1 4085 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 class class class wbr 4082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 |
| This theorem is referenced by: eqbrtri 4103 brtpos0 6396 euen1 6952 euen1b 6953 2dom 6956 infglbti 7188 pr2nelem 7360 pr2cv2 7365 caucvgprprlemnbj 7876 caucvgprprlemmu 7878 caucvgprprlemaddq 7891 caucvgprprlem1 7892 gt0srpr 7931 caucvgsr 7985 mappsrprg 7987 map2psrprg 7988 pitonnlem1 8028 pitoregt0 8032 axprecex 8063 axpre-mulgt0 8070 axcaucvglemres 8082 lt0neg1 8611 le0neg1 8613 reclt1 9039 addltmul 9344 eluz2b1 9792 nn01to3 9808 xlt0neg1 10030 xle0neg1 10032 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 bernneq 10877 cbvsum 11866 expcnv 12010 cbvprod 12064 oddge22np1 12387 nn0o1gt2 12411 isprm3 12635 dvdsnprmd 12642 pw2dvdslemn 12682 txmetcnp 15186 sincosq1sgn 15494 sincosq3sgn 15496 sincosq4sgn 15497 logrpap0b 15544 gausslemma2dlem3 15736 |
| Copyright terms: Public domain | W3C validator |