ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrexlem GIF version

Theorem tfrexlem 6387
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrexlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrexlem.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrexlem ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem tfrexlem
Dummy variables 𝑒 𝑔 𝑢 𝑣 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . 5 (𝑧 = 𝐶 → (recs(𝐹)‘𝑧) = (recs(𝐹)‘𝐶))
21eleq1d 2262 . . . 4 (𝑧 = 𝐶 → ((recs(𝐹)‘𝑧) ∈ V ↔ (recs(𝐹)‘𝐶) ∈ V))
32imbi2d 230 . . 3 (𝑧 = 𝐶 → ((𝜑 → (recs(𝐹)‘𝑧) ∈ V) ↔ (𝜑 → (recs(𝐹)‘𝐶) ∈ V)))
4 inss2 3380 . . . . . . 7 (suc suc 𝑧 ∩ On) ⊆ On
5 ssorduni 4519 . . . . . . 7 ((suc suc 𝑧 ∩ On) ⊆ On → Ord (suc suc 𝑧 ∩ On))
64, 5ax-mp 5 . . . . . 6 Ord (suc suc 𝑧 ∩ On)
7 vex 2763 . . . . . . . . . 10 𝑧 ∈ V
87sucex 4531 . . . . . . . . 9 suc 𝑧 ∈ V
98sucex 4531 . . . . . . . 8 suc suc 𝑧 ∈ V
109inex1 4163 . . . . . . 7 (suc suc 𝑧 ∩ On) ∈ V
1110uniex 4468 . . . . . 6 (suc suc 𝑧 ∩ On) ∈ V
12 elon2 4407 . . . . . 6 ( (suc suc 𝑧 ∩ On) ∈ On ↔ (Ord (suc suc 𝑧 ∩ On) ∧ (suc suc 𝑧 ∩ On) ∈ V))
136, 11, 12mpbir2an 944 . . . . 5 (suc suc 𝑧 ∩ On) ∈ On
14 tfrexlem.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1514tfrlem3 6364 . . . . . 6 𝐴 = {𝑣 ∣ ∃𝑧 ∈ On (𝑣 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑣𝑢) = (𝐹‘(𝑣𝑢)))}
16 tfrexlem.2 . . . . . . 7 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
17 fveq2 5554 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1817eleq1d 2262 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
1918anbi2d 464 . . . . . . . 8 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2019cbvalv 1929 . . . . . . 7 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2116, 20sylib 122 . . . . . 6 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2215, 21tfrlemi1 6385 . . . . 5 ((𝜑 (suc suc 𝑧 ∩ On) ∈ On) → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2313, 22mpan2 425 . . . 4 (𝜑 → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2415recsfval 6368 . . . . . . . . . . 11 recs(𝐹) = 𝐴
2524breqi 4035 . . . . . . . . . 10 (𝑧recs(𝐹)𝑦𝑧 𝐴𝑦)
26 df-br 4030 . . . . . . . . . 10 (𝑧 𝐴𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴)
27 eluni 3838 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
2825, 26, 273bitri 206 . . . . . . . . 9 (𝑧recs(𝐹)𝑦 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
297sucid 4448 . . . . . . . . . . . . . . . . 17 𝑧 ∈ suc 𝑧
30 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝐴)
31 vex 2763 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∈ V
3214, 31tfrlem3a 6363 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ↔ ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
3330, 32sylib 122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
34 simprl 529 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑡 ∈ On)
35 simprrl 539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → Fn 𝑡)
36 simpll 527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → ⟨𝑧, 𝑦⟩ ∈ )
37 fnop 5357 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( Fn 𝑡 ∧ ⟨𝑧, 𝑦⟩ ∈ ) → 𝑧𝑡)
3835, 36, 37syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧𝑡)
39 onelon 4415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ On ∧ 𝑧𝑡) → 𝑧 ∈ On)
4034, 38, 39syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧 ∈ On)
4133, 40rexlimddv 2616 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑧 ∈ On)
4241adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ On)
43 onsuc 4533 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → suc 𝑧 ∈ On)
4442, 43syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc 𝑧 ∈ On)
45 onsuc 4533 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑧 ∈ On → suc suc 𝑧 ∈ On)
4644, 45syl 14 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ∈ On)
47 onss 4525 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑧 ∈ On → suc suc 𝑧 ⊆ On)
4846, 47syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ⊆ On)
49 df-ss 3166 . . . . . . . . . . . . . . . . . . . 20 (suc suc 𝑧 ⊆ On ↔ (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5048, 49sylib 122 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5150unieqd 3846 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
52 eloni 4406 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑧 ∈ On → Ord suc 𝑧)
53 ordtr 4409 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑧 → Tr suc 𝑧)
5444, 52, 533syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → Tr suc 𝑧)
558unisuc 4444 . . . . . . . . . . . . . . . . . . 19 (Tr suc 𝑧 suc suc 𝑧 = suc 𝑧)
5654, 55sylib 122 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 = suc 𝑧)
5751, 56eqtrd 2226 . . . . . . . . . . . . . . . . 17 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc 𝑧)
5829, 57eleqtrrid 2283 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 (suc suc 𝑧 ∩ On))
59 fndm 5353 . . . . . . . . . . . . . . . . 17 (𝑔 Fn (suc suc 𝑧 ∩ On) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6059ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6158, 60eleqtrrd 2273 . . . . . . . . . . . . . . 15 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ dom 𝑔)
627eldm 4859 . . . . . . . . . . . . . . 15 (𝑧 ∈ dom 𝑔 ↔ ∃𝑥 𝑧𝑔𝑥)
6361, 62sylib 122 . . . . . . . . . . . . . 14 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → ∃𝑥 𝑧𝑔𝑥)
64 simpr 110 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑥)
65 fneq2 5343 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (𝑔 Fn 𝑣𝑔 Fn (suc suc 𝑧 ∩ On)))
66 raleq 2690 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤)) ↔ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6765, 66anbi12d 473 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (suc suc 𝑧 ∩ On) → ((𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) ↔ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))))
6867rspcev 2864 . . . . . . . . . . . . . . . . . . 19 (( (suc suc 𝑧 ∩ On) ∈ On ∧ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6913, 68mpan 424 . . . . . . . . . . . . . . . . . 18 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
70 vex 2763 . . . . . . . . . . . . . . . . . . 19 𝑔 ∈ V
7114, 70tfrlem3a 6363 . . . . . . . . . . . . . . . . . 18 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
7269, 71sylibr 134 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → 𝑔𝐴)
7372ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑔𝐴)
74 simplrr 536 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝐴)
75 simplrl 535 . . . . . . . . . . . . . . . . 17 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → ⟨𝑧, 𝑦⟩ ∈ )
76 df-br 4030 . . . . . . . . . . . . . . . . 17 (𝑧𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ )
7775, 76sylibr 134 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑦)
7815tfrlem5 6367 . . . . . . . . . . . . . . . . 17 ((𝑔𝐴𝐴) → ((𝑧𝑔𝑥𝑧𝑦) → 𝑥 = 𝑦))
7978imp 124 . . . . . . . . . . . . . . . 16 (((𝑔𝐴𝐴) ∧ (𝑧𝑔𝑥𝑧𝑦)) → 𝑥 = 𝑦)
8073, 74, 64, 77, 79syl22anc 1250 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑥 = 𝑦)
8164, 80breqtrd 4055 . . . . . . . . . . . . . 14 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑦)
8263, 81exlimddv 1910 . . . . . . . . . . . . 13 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧𝑔𝑦)
83 vex 2763 . . . . . . . . . . . . . 14 𝑦 ∈ V
847, 83brelrn 4895 . . . . . . . . . . . . 13 (𝑧𝑔𝑦𝑦 ∈ ran 𝑔)
8582, 84syl 14 . . . . . . . . . . . 12 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ∈ ran 𝑔)
86 elssuni 3863 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝑔𝑦 ran 𝑔)
8785, 86syl 14 . . . . . . . . . . 11 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ran 𝑔)
8887ex 115 . . . . . . . . . 10 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
8988exlimdv 1830 . . . . . . . . 9 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (∃(⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
9028, 89biimtrid 152 . . . . . . . 8 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
9190alrimiv 1885 . . . . . . 7 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
92 fvss 5568 . . . . . . 7 (∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9391, 92syl 14 . . . . . 6 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9470rnex 4929 . . . . . . . 8 ran 𝑔 ∈ V
9594uniex 4468 . . . . . . 7 ran 𝑔 ∈ V
9695ssex 4166 . . . . . 6 ((recs(𝐹)‘𝑧) ⊆ ran 𝑔 → (recs(𝐹)‘𝑧) ∈ V)
9793, 96syl 14 . . . . 5 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9897exlimiv 1609 . . . 4 (∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9923, 98syl 14 . . 3 (𝜑 → (recs(𝐹)‘𝑧) ∈ V)
1003, 99vtoclg 2820 . 2 (𝐶𝑉 → (𝜑 → (recs(𝐹)‘𝐶) ∈ V))
101100impcom 125 1 ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  cin 3152  wss 3153  cop 3621   cuni 3835   class class class wbr 4029  Tr wtr 4127  Ord word 4393  Oncon0 4394  suc csuc 4396  dom cdm 4659  ran crn 4660  cres 4661  Fun wfun 5248   Fn wfn 5249  cfv 5254  recscrecs 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrex  6421
  Copyright terms: Public domain W3C validator