Step | Hyp | Ref
| Expression |
1 | | fveq2 5496 |
. . . . 5
⊢ (𝑧 = 𝐶 → (recs(𝐹)‘𝑧) = (recs(𝐹)‘𝐶)) |
2 | 1 | eleq1d 2239 |
. . . 4
⊢ (𝑧 = 𝐶 → ((recs(𝐹)‘𝑧) ∈ V ↔ (recs(𝐹)‘𝐶) ∈ V)) |
3 | 2 | imbi2d 229 |
. . 3
⊢ (𝑧 = 𝐶 → ((𝜑 → (recs(𝐹)‘𝑧) ∈ V) ↔ (𝜑 → (recs(𝐹)‘𝐶) ∈ V))) |
4 | | inss2 3348 |
. . . . . . 7
⊢ (suc suc
𝑧 ∩ On) ⊆
On |
5 | | ssorduni 4471 |
. . . . . . 7
⊢ ((suc suc
𝑧 ∩ On) ⊆ On
→ Ord ∪ (suc suc 𝑧 ∩ On)) |
6 | 4, 5 | ax-mp 5 |
. . . . . 6
⊢ Ord ∪ (suc suc 𝑧 ∩ On) |
7 | | vex 2733 |
. . . . . . . . . 10
⊢ 𝑧 ∈ V |
8 | 7 | sucex 4483 |
. . . . . . . . 9
⊢ suc 𝑧 ∈ V |
9 | 8 | sucex 4483 |
. . . . . . . 8
⊢ suc suc
𝑧 ∈ V |
10 | 9 | inex1 4123 |
. . . . . . 7
⊢ (suc suc
𝑧 ∩ On) ∈
V |
11 | 10 | uniex 4422 |
. . . . . 6
⊢ ∪ (suc suc 𝑧 ∩ On) ∈ V |
12 | | elon2 4361 |
. . . . . 6
⊢ (∪ (suc suc 𝑧 ∩ On) ∈ On ↔ (Ord ∪ (suc suc 𝑧 ∩ On) ∧ ∪
(suc suc 𝑧 ∩ On) ∈
V)) |
13 | 6, 11, 12 | mpbir2an 937 |
. . . . 5
⊢ ∪ (suc suc 𝑧 ∩ On) ∈ On |
14 | | tfrexlem.1 |
. . . . . . 7
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
15 | 14 | tfrlem3 6290 |
. . . . . 6
⊢ 𝐴 = {𝑣 ∣ ∃𝑧 ∈ On (𝑣 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑣‘𝑢) = (𝐹‘(𝑣 ↾ 𝑢)))} |
16 | | tfrexlem.2 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
17 | | fveq2 5496 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
18 | 17 | eleq1d 2239 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥) ∈ V ↔ (𝐹‘𝑧) ∈ V)) |
19 | 18 | anbi2d 461 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V))) |
20 | 19 | cbvalv 1910 |
. . . . . . 7
⊢
(∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V)) |
21 | 16, 20 | sylib 121 |
. . . . . 6
⊢ (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹‘𝑧) ∈ V)) |
22 | 15, 21 | tfrlemi1 6311 |
. . . . 5
⊢ ((𝜑 ∧ ∪ (suc suc 𝑧 ∩ On) ∈ On) → ∃𝑔(𝑔 Fn ∪ (suc suc
𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
23 | 13, 22 | mpan2 423 |
. . . 4
⊢ (𝜑 → ∃𝑔(𝑔 Fn ∪ (suc suc
𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
24 | 15 | recsfval 6294 |
. . . . . . . . . . 11
⊢
recs(𝐹) = ∪ 𝐴 |
25 | 24 | breqi 3995 |
. . . . . . . . . 10
⊢ (𝑧recs(𝐹)𝑦 ↔ 𝑧∪ 𝐴𝑦) |
26 | | df-br 3990 |
. . . . . . . . . 10
⊢ (𝑧∪
𝐴𝑦 ↔ 〈𝑧, 𝑦〉 ∈ ∪
𝐴) |
27 | | eluni 3799 |
. . . . . . . . . 10
⊢
(〈𝑧, 𝑦〉 ∈ ∪ 𝐴
↔ ∃ℎ(〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
28 | 25, 26, 27 | 3bitri 205 |
. . . . . . . . 9
⊢ (𝑧recs(𝐹)𝑦 ↔ ∃ℎ(〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
29 | 7 | sucid 4402 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑧 ∈ suc 𝑧 |
30 | | simpr 109 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) → ℎ ∈ 𝐴) |
31 | | vex 2733 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ℎ ∈ V |
32 | 14, 31 | tfrlem3a 6289 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (ℎ ∈ 𝐴 ↔ ∃𝑡 ∈ On (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒)))) |
33 | 30, 32 | sylib 121 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) → ∃𝑡 ∈ On (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒)))) |
34 | | simprl 526 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒))))) → 𝑡 ∈ On) |
35 | | simprrl 534 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒))))) → ℎ Fn 𝑡) |
36 | | simpll 524 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒))))) → 〈𝑧, 𝑦〉 ∈ ℎ) |
37 | | fnop 5301 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((ℎ Fn 𝑡 ∧ 〈𝑧, 𝑦〉 ∈ ℎ) → 𝑧 ∈ 𝑡) |
38 | 35, 36, 37 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒))))) → 𝑧 ∈ 𝑡) |
39 | | onelon 4369 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ On ∧ 𝑧 ∈ 𝑡) → 𝑧 ∈ On) |
40 | 34, 38, 39 | syl2anc 409 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ (ℎ Fn 𝑡 ∧ ∀𝑒 ∈ 𝑡 (ℎ‘𝑒) = (𝐹‘(ℎ ↾ 𝑒))))) → 𝑧 ∈ On) |
41 | 33, 40 | rexlimddv 2592 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) → 𝑧 ∈ On) |
42 | 41 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑧 ∈ On) |
43 | | suceloni 4485 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ On → suc 𝑧 ∈ On) |
44 | 42, 43 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → suc 𝑧 ∈ On) |
45 | | suceloni 4485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (suc
𝑧 ∈ On → suc suc
𝑧 ∈
On) |
46 | 44, 45 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → suc suc 𝑧 ∈ On) |
47 | | onss 4477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (suc suc
𝑧 ∈ On → suc suc
𝑧 ⊆
On) |
48 | 46, 47 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → suc suc 𝑧 ⊆ On) |
49 | | df-ss 3134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc suc
𝑧 ⊆ On ↔ (suc
suc 𝑧 ∩ On) = suc suc
𝑧) |
50 | 48, 49 | sylib 121 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧) |
51 | 50 | unieqd 3807 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → ∪ (suc
suc 𝑧 ∩ On) = ∪ suc suc 𝑧) |
52 | | eloni 4360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (suc
𝑧 ∈ On → Ord suc
𝑧) |
53 | | ordtr 4363 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord suc
𝑧 → Tr suc 𝑧) |
54 | 44, 52, 53 | 3syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → Tr suc 𝑧) |
55 | 8 | unisuc 4398 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Tr suc
𝑧 ↔ ∪ suc suc 𝑧 = suc 𝑧) |
56 | 54, 55 | sylib 121 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → ∪ suc
suc 𝑧 = suc 𝑧) |
57 | 51, 56 | eqtrd 2203 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → ∪ (suc
suc 𝑧 ∩ On) = suc 𝑧) |
58 | 29, 57 | eleqtrrid 2260 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑧 ∈ ∪ (suc suc
𝑧 ∩
On)) |
59 | | fndm 5297 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 Fn ∪
(suc suc 𝑧 ∩ On) →
dom 𝑔 = ∪ (suc suc 𝑧 ∩ On)) |
60 | 59 | ad2antrr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → dom 𝑔 = ∪ (suc suc
𝑧 ∩
On)) |
61 | 58, 60 | eleqtrrd 2250 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑧 ∈ dom 𝑔) |
62 | 7 | eldm 4808 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ dom 𝑔 ↔ ∃𝑥 𝑧𝑔𝑥) |
63 | 61, 62 | sylib 121 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → ∃𝑥 𝑧𝑔𝑥) |
64 | | simpr 109 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑥) |
65 | | fneq2 5287 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = ∪
(suc suc 𝑧 ∩ On) →
(𝑔 Fn 𝑣 ↔ 𝑔 Fn ∪ (suc suc
𝑧 ∩
On))) |
66 | | raleq 2665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 = ∪
(suc suc 𝑧 ∩ On) →
(∀𝑤 ∈ 𝑣 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)) ↔ ∀𝑤 ∈ ∪ (suc suc
𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
67 | 65, 66 | anbi12d 470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑣 = ∪
(suc suc 𝑧 ∩ On) →
((𝑔 Fn 𝑣 ∧ ∀𝑤 ∈ 𝑣 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ↔ (𝑔 Fn ∪ (suc suc
𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))))) |
68 | 67 | rspcev 2834 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((∪ (suc suc 𝑧 ∩ On) ∈ On ∧ (𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤 ∈ 𝑣 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
69 | 13, 68 | mpan 422 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤 ∈ 𝑣 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
70 | | vex 2733 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑔 ∈ V |
71 | 14, 70 | tfrlem3a 6289 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤 ∈ 𝑣 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
72 | 69, 71 | sylibr 133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → 𝑔 ∈ 𝐴) |
73 | 72 | ad2antrr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑔 ∈ 𝐴) |
74 | | simplrr 531 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → ℎ ∈ 𝐴) |
75 | | simplrl 530 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 〈𝑧, 𝑦〉 ∈ ℎ) |
76 | | df-br 3990 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧ℎ𝑦 ↔ 〈𝑧, 𝑦〉 ∈ ℎ) |
77 | 75, 76 | sylibr 133 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧ℎ𝑦) |
78 | 15 | tfrlem5 6293 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑧𝑔𝑥 ∧ 𝑧ℎ𝑦) → 𝑥 = 𝑦)) |
79 | 78 | imp 123 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) ∧ (𝑧𝑔𝑥 ∧ 𝑧ℎ𝑦)) → 𝑥 = 𝑦) |
80 | 73, 74, 64, 77, 79 | syl22anc 1234 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑥 = 𝑦) |
81 | 64, 80 | breqtrd 4015 |
. . . . . . . . . . . . . 14
⊢ ((((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑦) |
82 | 63, 81 | exlimddv 1891 |
. . . . . . . . . . . . 13
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑧𝑔𝑦) |
83 | | vex 2733 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
84 | 7, 83 | brelrn 4844 |
. . . . . . . . . . . . 13
⊢ (𝑧𝑔𝑦 → 𝑦 ∈ ran 𝑔) |
85 | 82, 84 | syl 14 |
. . . . . . . . . . . 12
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑦 ∈ ran 𝑔) |
86 | | elssuni 3824 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran 𝑔 → 𝑦 ⊆ ∪ ran
𝑔) |
87 | 85, 86 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) ∧ (〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑦 ⊆ ∪ ran
𝑔) |
88 | 87 | ex 114 |
. . . . . . . . . 10
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → ((〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) → 𝑦 ⊆ ∪ ran
𝑔)) |
89 | 88 | exlimdv 1812 |
. . . . . . . . 9
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (∃ℎ(〈𝑧, 𝑦〉 ∈ ℎ ∧ ℎ ∈ 𝐴) → 𝑦 ⊆ ∪ ran
𝑔)) |
90 | 28, 89 | syl5bi 151 |
. . . . . . . 8
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (𝑧recs(𝐹)𝑦 → 𝑦 ⊆ ∪ ran
𝑔)) |
91 | 90 | alrimiv 1867 |
. . . . . . 7
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → ∀𝑦(𝑧recs(𝐹)𝑦 → 𝑦 ⊆ ∪ ran
𝑔)) |
92 | | fvss 5510 |
. . . . . . 7
⊢
(∀𝑦(𝑧recs(𝐹)𝑦 → 𝑦 ⊆ ∪ ran
𝑔) → (recs(𝐹)‘𝑧) ⊆ ∪ ran
𝑔) |
93 | 91, 92 | syl 14 |
. . . . . 6
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (recs(𝐹)‘𝑧) ⊆ ∪ ran
𝑔) |
94 | 70 | rnex 4878 |
. . . . . . . 8
⊢ ran 𝑔 ∈ V |
95 | 94 | uniex 4422 |
. . . . . . 7
⊢ ∪ ran 𝑔 ∈ V |
96 | 95 | ssex 4126 |
. . . . . 6
⊢
((recs(𝐹)‘𝑧) ⊆ ∪ ran
𝑔 → (recs(𝐹)‘𝑧) ∈ V) |
97 | 93, 96 | syl 14 |
. . . . 5
⊢ ((𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (recs(𝐹)‘𝑧) ∈ V) |
98 | 97 | exlimiv 1591 |
. . . 4
⊢
(∃𝑔(𝑔 Fn ∪
(suc suc 𝑧 ∩ On) ∧
∀𝑤 ∈ ∪ (suc suc 𝑧 ∩ On)(𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (recs(𝐹)‘𝑧) ∈ V) |
99 | 23, 98 | syl 14 |
. . 3
⊢ (𝜑 → (recs(𝐹)‘𝑧) ∈ V) |
100 | 3, 99 | vtoclg 2790 |
. 2
⊢ (𝐶 ∈ 𝑉 → (𝜑 → (recs(𝐹)‘𝐶) ∈ V)) |
101 | 100 | impcom 124 |
1
⊢ ((𝜑 ∧ 𝐶 ∈ 𝑉) → (recs(𝐹)‘𝐶) ∈ V) |