ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrexlem GIF version

Theorem tfrexlem 6224
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrexlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrexlem.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrexlem ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem tfrexlem
Dummy variables 𝑒 𝑔 𝑢 𝑣 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5414 . . . . 5 (𝑧 = 𝐶 → (recs(𝐹)‘𝑧) = (recs(𝐹)‘𝐶))
21eleq1d 2206 . . . 4 (𝑧 = 𝐶 → ((recs(𝐹)‘𝑧) ∈ V ↔ (recs(𝐹)‘𝐶) ∈ V))
32imbi2d 229 . . 3 (𝑧 = 𝐶 → ((𝜑 → (recs(𝐹)‘𝑧) ∈ V) ↔ (𝜑 → (recs(𝐹)‘𝐶) ∈ V)))
4 inss2 3292 . . . . . . 7 (suc suc 𝑧 ∩ On) ⊆ On
5 ssorduni 4398 . . . . . . 7 ((suc suc 𝑧 ∩ On) ⊆ On → Ord (suc suc 𝑧 ∩ On))
64, 5ax-mp 5 . . . . . 6 Ord (suc suc 𝑧 ∩ On)
7 vex 2684 . . . . . . . . . 10 𝑧 ∈ V
87sucex 4410 . . . . . . . . 9 suc 𝑧 ∈ V
98sucex 4410 . . . . . . . 8 suc suc 𝑧 ∈ V
109inex1 4057 . . . . . . 7 (suc suc 𝑧 ∩ On) ∈ V
1110uniex 4354 . . . . . 6 (suc suc 𝑧 ∩ On) ∈ V
12 elon2 4293 . . . . . 6 ( (suc suc 𝑧 ∩ On) ∈ On ↔ (Ord (suc suc 𝑧 ∩ On) ∧ (suc suc 𝑧 ∩ On) ∈ V))
136, 11, 12mpbir2an 926 . . . . 5 (suc suc 𝑧 ∩ On) ∈ On
14 tfrexlem.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1514tfrlem3 6201 . . . . . 6 𝐴 = {𝑣 ∣ ∃𝑧 ∈ On (𝑣 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑣𝑢) = (𝐹‘(𝑣𝑢)))}
16 tfrexlem.2 . . . . . . 7 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
17 fveq2 5414 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1817eleq1d 2206 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
1918anbi2d 459 . . . . . . . 8 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2019cbvalv 1889 . . . . . . 7 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2116, 20sylib 121 . . . . . 6 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2215, 21tfrlemi1 6222 . . . . 5 ((𝜑 (suc suc 𝑧 ∩ On) ∈ On) → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2313, 22mpan2 421 . . . 4 (𝜑 → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2415recsfval 6205 . . . . . . . . . . 11 recs(𝐹) = 𝐴
2524breqi 3930 . . . . . . . . . 10 (𝑧recs(𝐹)𝑦𝑧 𝐴𝑦)
26 df-br 3925 . . . . . . . . . 10 (𝑧 𝐴𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴)
27 eluni 3734 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
2825, 26, 273bitri 205 . . . . . . . . 9 (𝑧recs(𝐹)𝑦 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
297sucid 4334 . . . . . . . . . . . . . . . . 17 𝑧 ∈ suc 𝑧
30 simpr 109 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝐴)
31 vex 2684 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∈ V
3214, 31tfrlem3a 6200 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ↔ ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
3330, 32sylib 121 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
34 simprl 520 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑡 ∈ On)
35 simprrl 528 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → Fn 𝑡)
36 simpll 518 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → ⟨𝑧, 𝑦⟩ ∈ )
37 fnop 5221 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( Fn 𝑡 ∧ ⟨𝑧, 𝑦⟩ ∈ ) → 𝑧𝑡)
3835, 36, 37syl2anc 408 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧𝑡)
39 onelon 4301 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ On ∧ 𝑧𝑡) → 𝑧 ∈ On)
4034, 38, 39syl2anc 408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧 ∈ On)
4133, 40rexlimddv 2552 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑧 ∈ On)
4241adantl 275 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ On)
43 suceloni 4412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → suc 𝑧 ∈ On)
4442, 43syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc 𝑧 ∈ On)
45 suceloni 4412 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑧 ∈ On → suc suc 𝑧 ∈ On)
4644, 45syl 14 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ∈ On)
47 onss 4404 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑧 ∈ On → suc suc 𝑧 ⊆ On)
4846, 47syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ⊆ On)
49 df-ss 3079 . . . . . . . . . . . . . . . . . . . 20 (suc suc 𝑧 ⊆ On ↔ (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5048, 49sylib 121 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5150unieqd 3742 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
52 eloni 4292 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑧 ∈ On → Ord suc 𝑧)
53 ordtr 4295 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑧 → Tr suc 𝑧)
5444, 52, 533syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → Tr suc 𝑧)
558unisuc 4330 . . . . . . . . . . . . . . . . . . 19 (Tr suc 𝑧 suc suc 𝑧 = suc 𝑧)
5654, 55sylib 121 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 = suc 𝑧)
5751, 56eqtrd 2170 . . . . . . . . . . . . . . . . 17 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc 𝑧)
5829, 57eleqtrrid 2227 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 (suc suc 𝑧 ∩ On))
59 fndm 5217 . . . . . . . . . . . . . . . . 17 (𝑔 Fn (suc suc 𝑧 ∩ On) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6059ad2antrr 479 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6158, 60eleqtrrd 2217 . . . . . . . . . . . . . . 15 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ dom 𝑔)
627eldm 4731 . . . . . . . . . . . . . . 15 (𝑧 ∈ dom 𝑔 ↔ ∃𝑥 𝑧𝑔𝑥)
6361, 62sylib 121 . . . . . . . . . . . . . 14 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → ∃𝑥 𝑧𝑔𝑥)
64 simpr 109 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑥)
65 fneq2 5207 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (𝑔 Fn 𝑣𝑔 Fn (suc suc 𝑧 ∩ On)))
66 raleq 2624 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤)) ↔ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6765, 66anbi12d 464 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (suc suc 𝑧 ∩ On) → ((𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) ↔ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))))
6867rspcev 2784 . . . . . . . . . . . . . . . . . . 19 (( (suc suc 𝑧 ∩ On) ∈ On ∧ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6913, 68mpan 420 . . . . . . . . . . . . . . . . . 18 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
70 vex 2684 . . . . . . . . . . . . . . . . . . 19 𝑔 ∈ V
7114, 70tfrlem3a 6200 . . . . . . . . . . . . . . . . . 18 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
7269, 71sylibr 133 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → 𝑔𝐴)
7372ad2antrr 479 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑔𝐴)
74 simplrr 525 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝐴)
75 simplrl 524 . . . . . . . . . . . . . . . . 17 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → ⟨𝑧, 𝑦⟩ ∈ )
76 df-br 3925 . . . . . . . . . . . . . . . . 17 (𝑧𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ )
7775, 76sylibr 133 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑦)
7815tfrlem5 6204 . . . . . . . . . . . . . . . . 17 ((𝑔𝐴𝐴) → ((𝑧𝑔𝑥𝑧𝑦) → 𝑥 = 𝑦))
7978imp 123 . . . . . . . . . . . . . . . 16 (((𝑔𝐴𝐴) ∧ (𝑧𝑔𝑥𝑧𝑦)) → 𝑥 = 𝑦)
8073, 74, 64, 77, 79syl22anc 1217 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑥 = 𝑦)
8164, 80breqtrd 3949 . . . . . . . . . . . . . 14 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑦)
8263, 81exlimddv 1870 . . . . . . . . . . . . 13 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧𝑔𝑦)
83 vex 2684 . . . . . . . . . . . . . 14 𝑦 ∈ V
847, 83brelrn 4767 . . . . . . . . . . . . 13 (𝑧𝑔𝑦𝑦 ∈ ran 𝑔)
8582, 84syl 14 . . . . . . . . . . . 12 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ∈ ran 𝑔)
86 elssuni 3759 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝑔𝑦 ran 𝑔)
8785, 86syl 14 . . . . . . . . . . 11 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ran 𝑔)
8887ex 114 . . . . . . . . . 10 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
8988exlimdv 1791 . . . . . . . . 9 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (∃(⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
9028, 89syl5bi 151 . . . . . . . 8 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
9190alrimiv 1846 . . . . . . 7 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
92 fvss 5428 . . . . . . 7 (∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9391, 92syl 14 . . . . . 6 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9470rnex 4801 . . . . . . . 8 ran 𝑔 ∈ V
9594uniex 4354 . . . . . . 7 ran 𝑔 ∈ V
9695ssex 4060 . . . . . 6 ((recs(𝐹)‘𝑧) ⊆ ran 𝑔 → (recs(𝐹)‘𝑧) ∈ V)
9793, 96syl 14 . . . . 5 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9897exlimiv 1577 . . . 4 (∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9923, 98syl 14 . . 3 (𝜑 → (recs(𝐹)‘𝑧) ∈ V)
1003, 99vtoclg 2741 . 2 (𝐶𝑉 → (𝜑 → (recs(𝐹)‘𝐶) ∈ V))
101100impcom 124 1 ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1329   = wceq 1331  wex 1468  wcel 1480  {cab 2123  wral 2414  wrex 2415  Vcvv 2681  cin 3065  wss 3066  cop 3525   cuni 3731   class class class wbr 3924  Tr wtr 4021  Ord word 4279  Oncon0 4280  suc csuc 4282  dom cdm 4534  ran crn 4535  cres 4536  Fun wfun 5112   Fn wfn 5113  cfv 5118  recscrecs 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-recs 6195
This theorem is referenced by:  tfrex  6258
  Copyright terms: Public domain W3C validator