ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrexlem GIF version

Theorem tfrexlem 6392
Description: The transfinite recursion function is set-like if the input is. (Contributed by Mario Carneiro, 3-Jul-2019.)
Hypotheses
Ref Expression
tfrexlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrexlem.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrexlem ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem tfrexlem
Dummy variables 𝑒 𝑔 𝑢 𝑣 𝑡 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . . 5 (𝑧 = 𝐶 → (recs(𝐹)‘𝑧) = (recs(𝐹)‘𝐶))
21eleq1d 2265 . . . 4 (𝑧 = 𝐶 → ((recs(𝐹)‘𝑧) ∈ V ↔ (recs(𝐹)‘𝐶) ∈ V))
32imbi2d 230 . . 3 (𝑧 = 𝐶 → ((𝜑 → (recs(𝐹)‘𝑧) ∈ V) ↔ (𝜑 → (recs(𝐹)‘𝐶) ∈ V)))
4 inss2 3384 . . . . . . 7 (suc suc 𝑧 ∩ On) ⊆ On
5 ssorduni 4523 . . . . . . 7 ((suc suc 𝑧 ∩ On) ⊆ On → Ord (suc suc 𝑧 ∩ On))
64, 5ax-mp 5 . . . . . 6 Ord (suc suc 𝑧 ∩ On)
7 vex 2766 . . . . . . . . . 10 𝑧 ∈ V
87sucex 4535 . . . . . . . . 9 suc 𝑧 ∈ V
98sucex 4535 . . . . . . . 8 suc suc 𝑧 ∈ V
109inex1 4167 . . . . . . 7 (suc suc 𝑧 ∩ On) ∈ V
1110uniex 4472 . . . . . 6 (suc suc 𝑧 ∩ On) ∈ V
12 elon2 4411 . . . . . 6 ( (suc suc 𝑧 ∩ On) ∈ On ↔ (Ord (suc suc 𝑧 ∩ On) ∧ (suc suc 𝑧 ∩ On) ∈ V))
136, 11, 12mpbir2an 944 . . . . 5 (suc suc 𝑧 ∩ On) ∈ On
14 tfrexlem.1 . . . . . . 7 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
1514tfrlem3 6369 . . . . . 6 𝐴 = {𝑣 ∣ ∃𝑧 ∈ On (𝑣 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑣𝑢) = (𝐹‘(𝑣𝑢)))}
16 tfrexlem.2 . . . . . . 7 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
17 fveq2 5558 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
1817eleq1d 2265 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝐹𝑥) ∈ V ↔ (𝐹𝑧) ∈ V))
1918anbi2d 464 . . . . . . . 8 (𝑥 = 𝑧 → ((Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ (Fun 𝐹 ∧ (𝐹𝑧) ∈ V)))
2019cbvalv 1932 . . . . . . 7 (∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V) ↔ ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2116, 20sylib 122 . . . . . 6 (𝜑 → ∀𝑧(Fun 𝐹 ∧ (𝐹𝑧) ∈ V))
2215, 21tfrlemi1 6390 . . . . 5 ((𝜑 (suc suc 𝑧 ∩ On) ∈ On) → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2313, 22mpan2 425 . . . 4 (𝜑 → ∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
2415recsfval 6373 . . . . . . . . . . 11 recs(𝐹) = 𝐴
2524breqi 4039 . . . . . . . . . 10 (𝑧recs(𝐹)𝑦𝑧 𝐴𝑦)
26 df-br 4034 . . . . . . . . . 10 (𝑧 𝐴𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐴)
27 eluni 3842 . . . . . . . . . 10 (⟨𝑧, 𝑦⟩ ∈ 𝐴 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
2825, 26, 273bitri 206 . . . . . . . . 9 (𝑧recs(𝐹)𝑦 ↔ ∃(⟨𝑧, 𝑦⟩ ∈ 𝐴))
297sucid 4452 . . . . . . . . . . . . . . . . 17 𝑧 ∈ suc 𝑧
30 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝐴)
31 vex 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ∈ V
3214, 31tfrlem3a 6368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ↔ ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
3330, 32sylib 122 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → ∃𝑡 ∈ On ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))
34 simprl 529 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑡 ∈ On)
35 simprrl 539 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → Fn 𝑡)
36 simpll 527 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → ⟨𝑧, 𝑦⟩ ∈ )
37 fnop 5361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( Fn 𝑡 ∧ ⟨𝑧, 𝑦⟩ ∈ ) → 𝑧𝑡)
3835, 36, 37syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧𝑡)
39 onelon 4419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ On ∧ 𝑧𝑡) → 𝑧 ∈ On)
4034, 38, 39syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((⟨𝑧, 𝑦⟩ ∈ 𝐴) ∧ (𝑡 ∈ On ∧ ( Fn 𝑡 ∧ ∀𝑒𝑡 (𝑒) = (𝐹‘(𝑒))))) → 𝑧 ∈ On)
4133, 40rexlimddv 2619 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑧 ∈ On)
4241adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ On)
43 onsuc 4537 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → suc 𝑧 ∈ On)
4442, 43syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc 𝑧 ∈ On)
45 onsuc 4537 . . . . . . . . . . . . . . . . . . . . . 22 (suc 𝑧 ∈ On → suc suc 𝑧 ∈ On)
4644, 45syl 14 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ∈ On)
47 onss 4529 . . . . . . . . . . . . . . . . . . . . 21 (suc suc 𝑧 ∈ On → suc suc 𝑧 ⊆ On)
4846, 47syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 ⊆ On)
49 df-ss 3170 . . . . . . . . . . . . . . . . . . . 20 (suc suc 𝑧 ⊆ On ↔ (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5048, 49sylib 122 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
5150unieqd 3850 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc suc 𝑧)
52 eloni 4410 . . . . . . . . . . . . . . . . . . . 20 (suc 𝑧 ∈ On → Ord suc 𝑧)
53 ordtr 4413 . . . . . . . . . . . . . . . . . . . 20 (Ord suc 𝑧 → Tr suc 𝑧)
5444, 52, 533syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → Tr suc 𝑧)
558unisuc 4448 . . . . . . . . . . . . . . . . . . 19 (Tr suc 𝑧 suc suc 𝑧 = suc 𝑧)
5654, 55sylib 122 . . . . . . . . . . . . . . . . . 18 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → suc suc 𝑧 = suc 𝑧)
5751, 56eqtrd 2229 . . . . . . . . . . . . . . . . 17 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → (suc suc 𝑧 ∩ On) = suc 𝑧)
5829, 57eleqtrrid 2286 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 (suc suc 𝑧 ∩ On))
59 fndm 5357 . . . . . . . . . . . . . . . . 17 (𝑔 Fn (suc suc 𝑧 ∩ On) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6059ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → dom 𝑔 = (suc suc 𝑧 ∩ On))
6158, 60eleqtrrd 2276 . . . . . . . . . . . . . . 15 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧 ∈ dom 𝑔)
627eldm 4863 . . . . . . . . . . . . . . 15 (𝑧 ∈ dom 𝑔 ↔ ∃𝑥 𝑧𝑔𝑥)
6361, 62sylib 122 . . . . . . . . . . . . . 14 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → ∃𝑥 𝑧𝑔𝑥)
64 simpr 110 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑥)
65 fneq2 5347 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (𝑔 Fn 𝑣𝑔 Fn (suc suc 𝑧 ∩ On)))
66 raleq 2693 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (suc suc 𝑧 ∩ On) → (∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤)) ↔ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6765, 66anbi12d 473 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = (suc suc 𝑧 ∩ On) → ((𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) ↔ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))))
6867rspcev 2868 . . . . . . . . . . . . . . . . . . 19 (( (suc suc 𝑧 ∩ On) ∈ On ∧ (𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤)))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
6913, 68mpan 424 . . . . . . . . . . . . . . . . . 18 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
70 vex 2766 . . . . . . . . . . . . . . . . . . 19 𝑔 ∈ V
7114, 70tfrlem3a 6368 . . . . . . . . . . . . . . . . . 18 (𝑔𝐴 ↔ ∃𝑣 ∈ On (𝑔 Fn 𝑣 ∧ ∀𝑤𝑣 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
7269, 71sylibr 134 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → 𝑔𝐴)
7372ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑔𝐴)
74 simplrr 536 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝐴)
75 simplrl 535 . . . . . . . . . . . . . . . . 17 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → ⟨𝑧, 𝑦⟩ ∈ )
76 df-br 4034 . . . . . . . . . . . . . . . . 17 (𝑧𝑦 ↔ ⟨𝑧, 𝑦⟩ ∈ )
7775, 76sylibr 134 . . . . . . . . . . . . . . . 16 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑦)
7815tfrlem5 6372 . . . . . . . . . . . . . . . . 17 ((𝑔𝐴𝐴) → ((𝑧𝑔𝑥𝑧𝑦) → 𝑥 = 𝑦))
7978imp 124 . . . . . . . . . . . . . . . 16 (((𝑔𝐴𝐴) ∧ (𝑧𝑔𝑥𝑧𝑦)) → 𝑥 = 𝑦)
8073, 74, 64, 77, 79syl22anc 1250 . . . . . . . . . . . . . . 15 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑥 = 𝑦)
8164, 80breqtrd 4059 . . . . . . . . . . . . . 14 ((((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) ∧ 𝑧𝑔𝑥) → 𝑧𝑔𝑦)
8263, 81exlimddv 1913 . . . . . . . . . . . . 13 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑧𝑔𝑦)
83 vex 2766 . . . . . . . . . . . . . 14 𝑦 ∈ V
847, 83brelrn 4899 . . . . . . . . . . . . 13 (𝑧𝑔𝑦𝑦 ∈ ran 𝑔)
8582, 84syl 14 . . . . . . . . . . . 12 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ∈ ran 𝑔)
86 elssuni 3867 . . . . . . . . . . . 12 (𝑦 ∈ ran 𝑔𝑦 ran 𝑔)
8785, 86syl 14 . . . . . . . . . . 11 (((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) ∧ (⟨𝑧, 𝑦⟩ ∈ 𝐴)) → 𝑦 ran 𝑔)
8887ex 115 . . . . . . . . . 10 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ((⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
8988exlimdv 1833 . . . . . . . . 9 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (∃(⟨𝑧, 𝑦⟩ ∈ 𝐴) → 𝑦 ran 𝑔))
9028, 89biimtrid 152 . . . . . . . 8 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
9190alrimiv 1888 . . . . . . 7 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → ∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔))
92 fvss 5572 . . . . . . 7 (∀𝑦(𝑧recs(𝐹)𝑦𝑦 ran 𝑔) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9391, 92syl 14 . . . . . 6 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ⊆ ran 𝑔)
9470rnex 4933 . . . . . . . 8 ran 𝑔 ∈ V
9594uniex 4472 . . . . . . 7 ran 𝑔 ∈ V
9695ssex 4170 . . . . . 6 ((recs(𝐹)‘𝑧) ⊆ ran 𝑔 → (recs(𝐹)‘𝑧) ∈ V)
9793, 96syl 14 . . . . 5 ((𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9897exlimiv 1612 . . . 4 (∃𝑔(𝑔 Fn (suc suc 𝑧 ∩ On) ∧ ∀𝑤 (suc suc 𝑧 ∩ On)(𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (recs(𝐹)‘𝑧) ∈ V)
9923, 98syl 14 . . 3 (𝜑 → (recs(𝐹)‘𝑧) ∈ V)
1003, 99vtoclg 2824 . 2 (𝐶𝑉 → (𝜑 → (recs(𝐹)‘𝐶) ∈ V))
101100impcom 125 1 ((𝜑𝐶𝑉) → (recs(𝐹)‘𝐶) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  cin 3156  wss 3157  cop 3625   cuni 3839   class class class wbr 4033  Tr wtr 4131  Ord word 4397  Oncon0 4398  suc csuc 4400  dom cdm 4663  ran crn 4664  cres 4665  Fun wfun 5252   Fn wfn 5253  cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfrex  6426
  Copyright terms: Public domain W3C validator