![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brdifun | GIF version |
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
swoer.1 | ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
Ref | Expression |
---|---|
brdifun | ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4691 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
2 | df-br 4030 | . . . 4 ⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
3 | 1, 2 | sylibr 134 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴(𝑋 × 𝑋)𝐵) |
4 | swoer.1 | . . . . . 6 ⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) | |
5 | 4 | breqi 4035 | . . . . 5 ⊢ (𝐴𝑅𝐵 ↔ 𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵) |
6 | brdif 4082 | . . . . 5 ⊢ (𝐴((𝑋 × 𝑋) ∖ ( < ∪ ◡ < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) | |
7 | 5, 6 | bitri 184 | . . . 4 ⊢ (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
8 | 7 | baib 920 | . . 3 ⊢ (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
9 | 3, 8 | syl 14 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < ∪ ◡ < )𝐵)) |
10 | brun 4080 | . . . 4 ⊢ (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵)) | |
11 | brcnvg 4843 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴◡ < 𝐵 ↔ 𝐵 < 𝐴)) | |
12 | 11 | orbi2d 791 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 < 𝐵 ∨ 𝐴◡ < 𝐵) ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
13 | 10, 12 | bitrid 192 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴( < ∪ ◡ < )𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
14 | 13 | notbid 668 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (¬ 𝐴( < ∪ ◡ < )𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
15 | 9, 14 | bitrd 188 | 1 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∖ cdif 3150 ∪ cun 3151 〈cop 3621 class class class wbr 4029 × cxp 4657 ◡ccnv 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 |
This theorem is referenced by: swoer 6615 swoord1 6616 swoord2 6617 |
Copyright terms: Public domain | W3C validator |