ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdifun GIF version

Theorem brdifun 6540
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
Assertion
Ref Expression
brdifun ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 4643 . . . 4 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
2 df-br 3990 . . . 4 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
31, 2sylibr 133 . . 3 ((𝐴𝑋𝐵𝑋) → 𝐴(𝑋 × 𝑋)𝐵)
4 swoer.1 . . . . . 6 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
54breqi 3995 . . . . 5 (𝐴𝑅𝐵𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵)
6 brdif 4042 . . . . 5 (𝐴((𝑋 × 𝑋) ∖ ( < < ))𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
75, 6bitri 183 . . . 4 (𝐴𝑅𝐵 ↔ (𝐴(𝑋 × 𝑋)𝐵 ∧ ¬ 𝐴( < < )𝐵))
87baib 914 . . 3 (𝐴(𝑋 × 𝑋)𝐵 → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
93, 8syl 14 . 2 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ 𝐴( < < )𝐵))
10 brun 4040 . . . 4 (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐴 < 𝐵))
11 brcnvg 4792 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 < 𝐵𝐵 < 𝐴))
1211orbi2d 785 . . . 4 ((𝐴𝑋𝐵𝑋) → ((𝐴 < 𝐵𝐴 < 𝐵) ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1310, 12syl5bb 191 . . 3 ((𝐴𝑋𝐵𝑋) → (𝐴( < < )𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
1413notbid 662 . 2 ((𝐴𝑋𝐵𝑋) → (¬ 𝐴( < < )𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
159, 14bitrd 187 1 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703   = wceq 1348  wcel 2141  cdif 3118  cun 3119  cop 3586   class class class wbr 3989   × cxp 4609  ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619
This theorem is referenced by:  swoer  6541  swoord1  6542  swoord2  6543
  Copyright terms: Public domain W3C validator