![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmeterval | GIF version |
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
xmeterval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 14518 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | ffn 5403 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
3 | elpreima 5677 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) |
5 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
6 | 5 | breqi 4035 | . . 3 ⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(◡𝐷 “ ℝ)𝐵) |
7 | df-br 4030 | . . 3 ⊢ (𝐴(◡𝐷 “ ℝ)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) | |
8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) |
9 | df-3an 982 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ)) | |
10 | opelxp 4689 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
11 | 10 | bicomi 132 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
12 | df-ov 5921 | . . . . 5 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
13 | 12 | eleq1i 2259 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ) |
14 | 11, 13 | anbi12i 460 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
15 | 9, 14 | bitri 184 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
16 | 4, 8, 15 | 3bitr4g 223 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 × cxp 4657 ◡ccnv 4658 “ cima 4662 Fn wfn 5249 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ℝcr 7871 ℝ*cxr 8053 ∞Metcxmet 14032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-map 6704 df-pnf 8056 df-mnf 8057 df-xr 8058 df-xmet 14040 |
This theorem is referenced by: xmeter 14604 xmetec 14605 xmetresbl 14608 |
Copyright terms: Public domain | W3C validator |