| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmeterval | GIF version | ||
| Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
| Ref | Expression |
|---|---|
| xmeterval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 14897 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | ffn 5435 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
| 3 | elpreima 5712 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) | |
| 4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) |
| 5 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
| 6 | 5 | breqi 4057 | . . 3 ⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(◡𝐷 “ ℝ)𝐵) |
| 7 | df-br 4052 | . . 3 ⊢ (𝐴(◡𝐷 “ ℝ)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) |
| 9 | df-3an 983 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ)) | |
| 10 | opelxp 4713 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
| 11 | 10 | bicomi 132 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 12 | df-ov 5960 | . . . . 5 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 13 | 12 | eleq1i 2272 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ) |
| 14 | 11, 13 | anbi12i 460 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 15 | 9, 14 | bitri 184 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
| 16 | 4, 8, 15 | 3bitr4g 223 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 〈cop 3641 class class class wbr 4051 × cxp 4681 ◡ccnv 4682 “ cima 4686 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 (class class class)co 5957 ℝcr 7944 ℝ*cxr 8126 ∞Metcxmet 14373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-map 6750 df-pnf 8129 df-mnf 8130 df-xr 8131 df-xmet 14381 |
| This theorem is referenced by: xmeter 14983 xmetec 14984 xmetresbl 14987 |
| Copyright terms: Public domain | W3C validator |