Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmeterval | GIF version |
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
xmeter.1 | ⊢ ∼ = (◡𝐷 “ ℝ) |
Ref | Expression |
---|---|
xmeterval | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 13144 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | ffn 5347 | . . 3 ⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) | |
3 | elpreima 5615 | . . 3 ⊢ (𝐷 Fn (𝑋 × 𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) | |
4 | 1, 2, 3 | 3syl 17 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ))) |
5 | xmeter.1 | . . . 4 ⊢ ∼ = (◡𝐷 “ ℝ) | |
6 | 5 | breqi 3995 | . . 3 ⊢ (𝐴 ∼ 𝐵 ↔ 𝐴(◡𝐷 “ ℝ)𝐵) |
7 | df-br 3990 | . . 3 ⊢ (𝐴(◡𝐷 “ ℝ)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) | |
8 | 6, 7 | bitri 183 | . 2 ⊢ (𝐴 ∼ 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (◡𝐷 “ ℝ)) |
9 | df-3an 975 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ)) | |
10 | opelxp 4641 | . . . . 5 ⊢ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) | |
11 | 10 | bicomi 131 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
12 | df-ov 5856 | . . . . 5 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
13 | 12 | eleq1i 2236 | . . . 4 ⊢ ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ) |
14 | 11, 13 | anbi12i 457 | . . 3 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
15 | 9, 14 | bitri 183 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) ∧ (𝐷‘〈𝐴, 𝐵〉) ∈ ℝ)) |
16 | 4, 8, 15 | 3bitr4g 222 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 × cxp 4609 ◡ccnv 4610 “ cima 4614 Fn wfn 5193 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ℝcr 7773 ℝ*cxr 7953 ∞Metcxmet 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xmet 12782 |
This theorem is referenced by: xmeter 13230 xmetec 13231 xmetresbl 13234 |
Copyright terms: Public domain | W3C validator |