ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeterval GIF version

Theorem xmeterval 14755
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeterval (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 14670 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 ffn 5410 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
3 elpreima 5684 . . 3 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
41, 2, 33syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
5 xmeter.1 . . . 4 = (𝐷 “ ℝ)
65breqi 4040 . . 3 (𝐴 𝐵𝐴(𝐷 “ ℝ)𝐵)
7 df-br 4035 . . 3 (𝐴(𝐷 “ ℝ)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
86, 7bitri 184 . 2 (𝐴 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
9 df-3an 982 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ))
10 opelxp 4694 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ↔ (𝐴𝑋𝐵𝑋))
1110bicomi 132 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
12 df-ov 5928 . . . . 5 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
1312eleq1i 2262 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)
1411, 13anbi12i 460 . . 3 (((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
159, 14bitri 184 . 2 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
164, 8, 153bitr4g 223 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  cop 3626   class class class wbr 4034   × cxp 4662  ccnv 4663  cima 4667   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  cr 7895  *cxr 8077  ∞Metcxmet 14168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-xmet 14176
This theorem is referenced by:  xmeter  14756  xmetec  14757  xmetresbl  14760
  Copyright terms: Public domain W3C validator