ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeterval GIF version

Theorem xmeterval 14318
Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
xmeter.1 = (𝐷 “ ℝ)
Assertion
Ref Expression
xmeterval (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))

Proof of Theorem xmeterval
StepHypRef Expression
1 xmetf 14233 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 ffn 5379 . . 3 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
3 elpreima 5650 . . 3 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
41, 2, 33syl 17 . 2 (𝐷 ∈ (∞Met‘𝑋) → (⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)))
5 xmeter.1 . . . 4 = (𝐷 “ ℝ)
65breqi 4023 . . 3 (𝐴 𝐵𝐴(𝐷 “ ℝ)𝐵)
7 df-br 4018 . . 3 (𝐴(𝐷 “ ℝ)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
86, 7bitri 184 . 2 (𝐴 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐷 “ ℝ))
9 df-3an 981 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ))
10 opelxp 4670 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ↔ (𝐴𝑋𝐵𝑋))
1110bicomi 132 . . . 4 ((𝐴𝑋𝐵𝑋) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
12 df-ov 5893 . . . . 5 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
1312eleq1i 2254 . . . 4 ((𝐴𝐷𝐵) ∈ ℝ ↔ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ)
1411, 13anbi12i 460 . . 3 (((𝐴𝑋𝐵𝑋) ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
159, 14bitri 184 . 2 ((𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ) ↔ (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝐴, 𝐵⟩) ∈ ℝ))
164, 8, 153bitr4g 223 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 979   = wceq 1363  wcel 2159  cop 3609   class class class wbr 4017   × cxp 4638  ccnv 4639  cima 4643   Fn wfn 5225  wf 5226  cfv 5230  (class class class)co 5890  cr 7827  *cxr 8008  ∞Metcxmet 13809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-map 6667  df-pnf 8011  df-mnf 8012  df-xr 8013  df-xmet 13817
This theorem is referenced by:  xmeter  14319  xmetec  14320  xmetresbl  14323
  Copyright terms: Public domain W3C validator