ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord GIF version

Theorem ltpiord 7432
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7420 . . 3 <N = ( E ∩ (N × N))
21breqi 4050 . 2 (𝐴 <N 𝐵𝐴( E ∩ (N × N))𝐵)
3 brinxp 4743 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴( E ∩ (N × N))𝐵))
4 epelg 4337 . . . 4 (𝐵N → (𝐴 E 𝐵𝐴𝐵))
54adantl 277 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴𝐵))
63, 5bitr3d 190 . 2 ((𝐴N𝐵N) → (𝐴( E ∩ (N × N))𝐵𝐴𝐵))
72, 6bitrid 192 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2176  cin 3165   class class class wbr 4044   E cep 4334   × cxp 4673  Ncnpi 7385   <N clti 7388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-eprel 4336  df-xp 4681  df-lti 7420
This theorem is referenced by:  ltsopi  7433  pitric  7434  pitri3or  7435  ltdcpi  7436  ltexpi  7450  ltapig  7451  ltmpig  7452  1lt2pi  7453  nlt1pig  7454  archnqq  7530  prarloclemarch2  7532  prarloclemlt  7606  prarloclemn  7612
  Copyright terms: Public domain W3C validator