ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpiord GIF version

Theorem ltpiord 7281
Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltpiord ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))

Proof of Theorem ltpiord
StepHypRef Expression
1 df-lti 7269 . . 3 <N = ( E ∩ (N × N))
21breqi 3995 . 2 (𝐴 <N 𝐵𝐴( E ∩ (N × N))𝐵)
3 brinxp 4679 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴( E ∩ (N × N))𝐵))
4 epelg 4275 . . . 4 (𝐵N → (𝐴 E 𝐵𝐴𝐵))
54adantl 275 . . 3 ((𝐴N𝐵N) → (𝐴 E 𝐵𝐴𝐵))
63, 5bitr3d 189 . 2 ((𝐴N𝐵N) → (𝐴( E ∩ (N × N))𝐵𝐴𝐵))
72, 6syl5bb 191 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  cin 3120   class class class wbr 3989   E cep 4272   × cxp 4609  Ncnpi 7234   <N clti 7237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-eprel 4274  df-xp 4617  df-lti 7269
This theorem is referenced by:  ltsopi  7282  pitric  7283  pitri3or  7284  ltdcpi  7285  ltexpi  7299  ltapig  7300  ltmpig  7301  1lt2pi  7302  nlt1pig  7303  archnqq  7379  prarloclemarch2  7381  prarloclemlt  7455  prarloclemn  7461
  Copyright terms: Public domain W3C validator