| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpiord | GIF version | ||
| Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ltpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 7420 | . . 3 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | 1 | breqi 4050 | . 2 ⊢ (𝐴 <N 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵) |
| 3 | brinxp 4743 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵)) | |
| 4 | epelg 4337 | . . . 4 ⊢ (𝐵 ∈ N → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 6 | 3, 5 | bitr3d 190 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴( E ∩ (N × N))𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 2, 6 | bitrid 192 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ∩ cin 3165 class class class wbr 4044 E cep 4334 × cxp 4673 Ncnpi 7385 <N clti 7388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-eprel 4336 df-xp 4681 df-lti 7420 |
| This theorem is referenced by: ltsopi 7433 pitric 7434 pitri3or 7435 ltdcpi 7436 ltexpi 7450 ltapig 7451 ltmpig 7452 1lt2pi 7453 nlt1pig 7454 archnqq 7530 prarloclemarch2 7532 prarloclemlt 7606 prarloclemn 7612 |
| Copyright terms: Public domain | W3C validator |