| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltpiord | GIF version | ||
| Description: Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| ltpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lti 7494 | . . 3 ⊢ <N = ( E ∩ (N × N)) | |
| 2 | 1 | breqi 4089 | . 2 ⊢ (𝐴 <N 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵) |
| 3 | brinxp 4787 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴( E ∩ (N × N))𝐵)) | |
| 4 | epelg 4381 | . . . 4 ⊢ (𝐵 ∈ N → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 E 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 6 | 3, 5 | bitr3d 190 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴( E ∩ (N × N))𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 7 | 2, 6 | bitrid 192 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∩ cin 3196 class class class wbr 4083 E cep 4378 × cxp 4717 Ncnpi 7459 <N clti 7462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-eprel 4380 df-xp 4725 df-lti 7494 |
| This theorem is referenced by: ltsopi 7507 pitric 7508 pitri3or 7509 ltdcpi 7510 ltexpi 7524 ltapig 7525 ltmpig 7526 1lt2pi 7527 nlt1pig 7528 archnqq 7604 prarloclemarch2 7606 prarloclemlt 7680 prarloclemn 7686 |
| Copyright terms: Public domain | W3C validator |