ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt GIF version

Theorem f1ompt 5618
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
f1ompt (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem f1ompt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffn 5319 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dff1o4 5422 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
32baib 905 . . . . 5 (𝐹 Fn 𝐴 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
41, 3syl 14 . . . 4 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
5 fnres 5286 . . . . . 6 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧)
6 nfcv 2299 . . . . . . . . . 10 𝑥𝑧
7 fmpt.1 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐶)
8 nfmpt1 4057 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐶)
97, 8nfcxfr 2296 . . . . . . . . . 10 𝑥𝐹
10 nfcv 2299 . . . . . . . . . 10 𝑥𝑦
116, 9, 10nfbr 4010 . . . . . . . . 9 𝑥 𝑧𝐹𝑦
12 nfv 1508 . . . . . . . . 9 𝑧(𝑥𝐴𝑦 = 𝐶)
13 breq1 3968 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝐹𝑦𝑥𝐹𝑦))
14 df-mpt 4027 . . . . . . . . . . . . 13 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
157, 14eqtri 2178 . . . . . . . . . . . 12 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1615breqi 3971 . . . . . . . . . . 11 (𝑥𝐹𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦)
17 df-br 3966 . . . . . . . . . . . 12 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
18 opabid 4217 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ↔ (𝑥𝐴𝑦 = 𝐶))
1917, 18bitri 183 . . . . . . . . . . 11 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2016, 19bitri 183 . . . . . . . . . 10 (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2113, 20bitrdi 195 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶)))
2211, 12, 21cbveu 2030 . . . . . . . 8 (∃!𝑧 𝑧𝐹𝑦 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
23 vex 2715 . . . . . . . . . 10 𝑦 ∈ V
24 vex 2715 . . . . . . . . . 10 𝑧 ∈ V
2523, 24brcnv 4769 . . . . . . . . 9 (𝑦𝐹𝑧𝑧𝐹𝑦)
2625eubii 2015 . . . . . . . 8 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑧 𝑧𝐹𝑦)
27 df-reu 2442 . . . . . . . 8 (∃!𝑥𝐴 𝑦 = 𝐶 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
2822, 26, 273bitr4i 211 . . . . . . 7 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑥𝐴 𝑦 = 𝐶)
2928ralbii 2463 . . . . . 6 (∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
305, 29bitri 183 . . . . 5 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
31 relcnv 4964 . . . . . . 7 Rel 𝐹
32 df-rn 4597 . . . . . . . 8 ran 𝐹 = dom 𝐹
33 frn 5328 . . . . . . . 8 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
3432, 33eqsstrrid 3175 . . . . . . 7 (𝐹:𝐴𝐵 → dom 𝐹𝐵)
35 relssres 4904 . . . . . . 7 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
3631, 34, 35sylancr 411 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐹)
3736fneq1d 5260 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹𝐵) Fn 𝐵𝐹 Fn 𝐵))
3830, 37bitr3id 193 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶𝐹 Fn 𝐵))
394, 38bitr4d 190 . . 3 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4039pm5.32i 450 . 2 ((𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
41 f1of 5414 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
4241pm4.71ri 390 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵))
437fmpt 5617 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
4443anbi1i 454 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4540, 42, 443bitr4i 211 1 (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1335  ∃!weu 2006  wcel 2128  wral 2435  ∃!wreu 2437  wss 3102  cop 3563   class class class wbr 3965  {copab 4024  cmpt 4025  ccnv 4585  dom cdm 4586  ran crn 4587  cres 4588  Rel wrel 4591   Fn wfn 5165  wf 5166  1-1-ontowf1o 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178
This theorem is referenced by:  xpf1o  6789  icoshftf1o  9895
  Copyright terms: Public domain W3C validator