ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ompt GIF version

Theorem f1ompt 5636
Description: Express bijection for a mapping operation. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by Mario Carneiro, 4-Dec-2016.)
Hypothesis
Ref Expression
fmpt.1 𝐹 = (𝑥𝐴𝐶)
Assertion
Ref Expression
f1ompt (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑦,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem f1ompt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ffn 5337 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 dff1o4 5440 . . . . . 6 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
32baib 909 . . . . 5 (𝐹 Fn 𝐴 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
41, 3syl 14 . . . 4 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵𝐹 Fn 𝐵))
5 fnres 5304 . . . . . 6 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧)
6 nfcv 2308 . . . . . . . . . 10 𝑥𝑧
7 fmpt.1 . . . . . . . . . . 11 𝐹 = (𝑥𝐴𝐶)
8 nfmpt1 4075 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐶)
97, 8nfcxfr 2305 . . . . . . . . . 10 𝑥𝐹
10 nfcv 2308 . . . . . . . . . 10 𝑥𝑦
116, 9, 10nfbr 4028 . . . . . . . . 9 𝑥 𝑧𝐹𝑦
12 nfv 1516 . . . . . . . . 9 𝑧(𝑥𝐴𝑦 = 𝐶)
13 breq1 3985 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧𝐹𝑦𝑥𝐹𝑦))
14 df-mpt 4045 . . . . . . . . . . . . 13 (𝑥𝐴𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
157, 14eqtri 2186 . . . . . . . . . . . 12 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}
1615breqi 3988 . . . . . . . . . . 11 (𝑥𝐹𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦)
17 df-br 3983 . . . . . . . . . . . 12 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)})
18 opabid 4235 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)} ↔ (𝑥𝐴𝑦 = 𝐶))
1917, 18bitri 183 . . . . . . . . . . 11 (𝑥{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐶)}𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2016, 19bitri 183 . . . . . . . . . 10 (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶))
2113, 20bitrdi 195 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐹𝑦 ↔ (𝑥𝐴𝑦 = 𝐶)))
2211, 12, 21cbveu 2038 . . . . . . . 8 (∃!𝑧 𝑧𝐹𝑦 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
23 vex 2729 . . . . . . . . . 10 𝑦 ∈ V
24 vex 2729 . . . . . . . . . 10 𝑧 ∈ V
2523, 24brcnv 4787 . . . . . . . . 9 (𝑦𝐹𝑧𝑧𝐹𝑦)
2625eubii 2023 . . . . . . . 8 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑧 𝑧𝐹𝑦)
27 df-reu 2451 . . . . . . . 8 (∃!𝑥𝐴 𝑦 = 𝐶 ↔ ∃!𝑥(𝑥𝐴𝑦 = 𝐶))
2822, 26, 273bitr4i 211 . . . . . . 7 (∃!𝑧 𝑦𝐹𝑧 ↔ ∃!𝑥𝐴 𝑦 = 𝐶)
2928ralbii 2472 . . . . . 6 (∀𝑦𝐵 ∃!𝑧 𝑦𝐹𝑧 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
305, 29bitri 183 . . . . 5 ((𝐹𝐵) Fn 𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶)
31 relcnv 4982 . . . . . . 7 Rel 𝐹
32 df-rn 4615 . . . . . . . 8 ran 𝐹 = dom 𝐹
33 frn 5346 . . . . . . . 8 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
3432, 33eqsstrrid 3189 . . . . . . 7 (𝐹:𝐴𝐵 → dom 𝐹𝐵)
35 relssres 4922 . . . . . . 7 ((Rel 𝐹 ∧ dom 𝐹𝐵) → (𝐹𝐵) = 𝐹)
3631, 34, 35sylancr 411 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝐵) = 𝐹)
3736fneq1d 5278 . . . . 5 (𝐹:𝐴𝐵 → ((𝐹𝐵) Fn 𝐵𝐹 Fn 𝐵))
3830, 37bitr3id 193 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶𝐹 Fn 𝐵))
394, 38bitr4d 190 . . 3 (𝐹:𝐴𝐵 → (𝐹:𝐴1-1-onto𝐵 ↔ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4039pm5.32i 450 . 2 ((𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
41 f1of 5432 . . 3 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
4241pm4.71ri 390 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴𝐵𝐹:𝐴1-1-onto𝐵))
437fmpt 5635 . . 3 (∀𝑥𝐴 𝐶𝐵𝐹:𝐴𝐵)
4443anbi1i 454 . 2 ((∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
4540, 42, 443bitr4i 211 1 (𝐹:𝐴1-1-onto𝐵 ↔ (∀𝑥𝐴 𝐶𝐵 ∧ ∀𝑦𝐵 ∃!𝑥𝐴 𝑦 = 𝐶))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  ∃!weu 2014  wcel 2136  wral 2444  ∃!wreu 2446  wss 3116  cop 3579   class class class wbr 3982  {copab 4042  cmpt 4043  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  Rel wrel 4609   Fn wfn 5183  wf 5184  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  xpf1o  6810  icoshftf1o  9927
  Copyright terms: Public domain W3C validator