| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvreuvw | GIF version | ||
| Description: Version of cbvreuv 2731 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) | 
| Ref | Expression | 
|---|---|
| cbvralvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvreuvw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1w 2257 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 2 | cbvralvw.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | anbi12d 473 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 4 | equequ1 1726 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 5 | 3, 4 | bibi12d 235 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧))) | 
| 6 | 5 | cbvalvw 1934 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) | 
| 7 | 6 | exbii 1619 | . . 3 ⊢ (∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) | 
| 8 | df-eu 2048 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧)) | |
| 9 | df-eu 2048 | . . 3 ⊢ (∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) | |
| 10 | 7, 8, 9 | 3bitr4ri 213 | . 2 ⊢ (∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 11 | df-reu 2482 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 12 | df-reu 2482 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 13 | 10, 11, 12 | 3bitr4ri 213 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 ∃!wreu 2477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-eu 2048 df-clel 2192 df-reu 2482 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |