Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvreuvw | GIF version |
Description: Version of cbvreuv 2698 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
cbvralvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvreuvw | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1w 2231 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
2 | cbvralvw.1 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 470 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) |
4 | equequ1 1705 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | |
5 | 3, 4 | bibi12d 234 | . . . . 5 ⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧))) |
6 | 5 | cbvalvw 1912 | . . . 4 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) |
7 | 6 | exbii 1598 | . . 3 ⊢ (∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧) ↔ ∃𝑧∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) |
8 | df-eu 2022 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑧∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑧)) | |
9 | df-eu 2022 | . . 3 ⊢ (∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑧∀𝑦((𝑦 ∈ 𝐴 ∧ 𝜓) ↔ 𝑦 = 𝑧)) | |
10 | 7, 8, 9 | 3bitr4ri 212 | . 2 ⊢ (∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
11 | df-reu 2455 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
12 | df-reu 2455 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
13 | 10, 11, 12 | 3bitr4ri 212 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃wex 1485 ∃!weu 2019 ∈ wcel 2141 ∃!wreu 2450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-eu 2022 df-clel 2166 df-reu 2455 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |