| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral3v | GIF version | ||
| Description: Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
| Ref | Expression |
|---|---|
| cbvral3v.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| cbvral3v.2 | ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) |
| cbvral3v.3 | ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvral3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral3v.1 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | 2ralbidv 2529 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) |
| 3 | 2 | cbvralv 2737 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒) |
| 4 | cbvral3v.2 | . . . 4 ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) | |
| 5 | cbvral3v.3 | . . . 4 ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) | |
| 6 | 4, 5 | cbvral2v 2750 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 7 | 6 | ralbii 2511 | . 2 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| 8 | 3, 7 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |