Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvral3v | GIF version |
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.) |
Ref | Expression |
---|---|
cbvral3v.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
cbvral3v.2 | ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) |
cbvral3v.3 | ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvral3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvral3v.1 | . . . 4 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
2 | 1 | 2ralbidv 2490 | . . 3 ⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒)) |
3 | 2 | cbvralv 2692 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒) |
4 | cbvral3v.2 | . . . 4 ⊢ (𝑦 = 𝑣 → (𝜒 ↔ 𝜃)) | |
5 | cbvral3v.3 | . . . 4 ⊢ (𝑧 = 𝑢 → (𝜃 ↔ 𝜓)) | |
6 | 4, 5 | cbvral2v 2705 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
7 | 6 | ralbii 2472 | . 2 ⊢ (∀𝑤 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜒 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
8 | 3, 7 | bitri 183 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 ↔ ∀𝑤 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ∀𝑢 ∈ 𝐶 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |