ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral3v GIF version

Theorem cbvral3v 2719
Description: Change bound variables of triple restricted universal quantification, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
cbvral3v.1 (𝑥 = 𝑤 → (𝜑𝜒))
cbvral3v.2 (𝑦 = 𝑣 → (𝜒𝜃))
cbvral3v.3 (𝑧 = 𝑢 → (𝜃𝜓))
Assertion
Ref Expression
cbvral3v (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
Distinct variable groups:   𝜑,𝑤   𝜓,𝑧   𝜒,𝑥   𝜒,𝑣   𝑦,𝑢,𝜃   𝑥,𝐴   𝑤,𝐴   𝑥,𝑦,𝐵   𝑦,𝑤,𝐵   𝑣,𝐵   𝑥,𝑧,𝐶,𝑦   𝑧,𝑤,𝐶   𝑧,𝑣,𝐶   𝑢,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑣,𝑢)   𝜓(𝑥,𝑦,𝑤,𝑣,𝑢)   𝜒(𝑦,𝑧,𝑤,𝑢)   𝜃(𝑥,𝑧,𝑤,𝑣)   𝐴(𝑦,𝑧,𝑣,𝑢)   𝐵(𝑧,𝑢)

Proof of Theorem cbvral3v
StepHypRef Expression
1 cbvral3v.1 . . . 4 (𝑥 = 𝑤 → (𝜑𝜒))
212ralbidv 2501 . . 3 (𝑥 = 𝑤 → (∀𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑦𝐵𝑧𝐶 𝜒))
32cbvralv 2704 . 2 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑦𝐵𝑧𝐶 𝜒)
4 cbvral3v.2 . . . 4 (𝑦 = 𝑣 → (𝜒𝜃))
5 cbvral3v.3 . . . 4 (𝑧 = 𝑢 → (𝜃𝜓))
64, 5cbvral2v 2717 . . 3 (∀𝑦𝐵𝑧𝐶 𝜒 ↔ ∀𝑣𝐵𝑢𝐶 𝜓)
76ralbii 2483 . 2 (∀𝑤𝐴𝑦𝐵𝑧𝐶 𝜒 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
83, 7bitri 184 1 (∀𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀𝑤𝐴𝑣𝐵𝑢𝐶 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator