| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvralsv | GIF version | ||
| Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralsv | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfs1v 1968 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sbequ12 1795 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvral 2735 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
| 5 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 6 | 5 | nfsb 1975 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 7 | nfv 1552 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 8 | sbequ 1864 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 9 | 6, 7, 8 | cbvral 2735 | . 2 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| 10 | 4, 9 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 |
| This theorem is referenced by: sbralie 2757 rspsbc 3085 ralxpf 4832 |
| Copyright terms: Public domain | W3C validator |