| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvralsv | GIF version | ||
| Description: Change bound variable by using a substitution. (Contributed by NM, 20-Nov-2005.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| cbvralsv | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfs1v 1958 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sbequ12 1785 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvral 2725 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
| 5 | nfv 1542 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 6 | 5 | nfsb 1965 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 |
| 7 | nfv 1542 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 8 | sbequ 1854 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 9 | 6, 7, 8 | cbvral 2725 | . 2 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| 10 | 4, 9 | bitri 184 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1776 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: sbralie 2747 rspsbc 3072 ralxpf 4812 |
| Copyright terms: Public domain | W3C validator |