| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ceqsex | GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| ceqsex.1 | ⊢ Ⅎ𝑥𝜓 | 
| ceqsex.2 | ⊢ 𝐴 ∈ V | 
| ceqsex.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ceqsex | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ceqsex.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | ceqsex.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpa 296 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝜓) | 
| 4 | 1, 3 | exlimi 1608 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓) | 
| 5 | 2 | biimprcd 160 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) | 
| 6 | 1, 5 | alrimi 1536 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) | 
| 7 | ceqsex.2 | . . . 4 ⊢ 𝐴 ∈ V | |
| 8 | 7 | isseti 2771 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 | 
| 9 | exintr 1648 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 10 | 6, 8, 9 | mpisyl 1457 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) | 
| 11 | 4, 10 | impbii 126 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: ceqsexv 2802 ceqsex2 2804 | 
| Copyright terms: Public domain | W3C validator |