| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex | GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) (Revised by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| ceqsex.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsex.2 | ⊢ 𝐴 ∈ V |
| ceqsex.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsex | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 2 | ceqsex.3 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | biimpa 296 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
| 4 | 1, 3 | exlimi 1618 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
| 5 | 2 | biimprcd 160 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 6 | 1, 5 | alrimi 1546 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
| 7 | ceqsex.2 | . . . 4 ⊢ 𝐴 ∈ V | |
| 8 | 7 | isseti 2785 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 9 | exintr 1658 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 10 | 6, 8, 9 | mpisyl 1467 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 11 | 4, 10 | impbii 126 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: ceqsexv 2816 ceqsex2 2818 |
| Copyright terms: Public domain | W3C validator |