| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 978 ax11i 1738 equsex 1752 eleq1a 2279 ceqsalg 2805 cgsexg 2812 cgsex2g 2813 cgsex4g 2814 ceqsex 2815 spc2egv 2870 spc3egv 2872 csbiebt 3141 dfiin2g 3974 sotricim 4388 ralxfrALT 4532 iunpw 4545 opelxp 4723 ssrel 4781 ssrel2 4783 ssrelrel 4793 iss 5024 funcnvuni 5362 fun11iun 5565 tfrlem8 6427 eroveu 6736 fundmen 6922 nneneq 6979 fidifsnen 6993 prarloclem5 7648 prarloc 7651 recexprlemss1l 7783 recexprlemss1u 7784 uzin 9716 indstr 9749 elfzmlbp 10289 swrdnd 11150 |
| Copyright terms: Public domain | W3C validator |