| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 977 ax11i 1728 equsex 1742 eleq1a 2268 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 ceqsex 2801 spc2egv 2854 spc3egv 2856 csbiebt 3124 dfiin2g 3950 sotricim 4359 ralxfrALT 4503 iunpw 4516 opelxp 4694 ssrel 4752 ssrel2 4754 ssrelrel 4764 iss 4993 funcnvuni 5328 fun11iun 5528 tfrlem8 6385 eroveu 6694 fundmen 6874 nneneq 6927 fidifsnen 6940 prarloclem5 7584 prarloc 7587 recexprlemss1l 7719 recexprlemss1u 7720 uzin 9651 indstr 9684 elfzmlbp 10224 |
| Copyright terms: Public domain | W3C validator |