Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibrcom 156 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimparc 297 pm5.32 449 oplem1 965 ax11i 1702 equsex 1716 eleq1a 2238 ceqsalg 2754 cgsexg 2761 cgsex2g 2762 cgsex4g 2763 ceqsex 2764 spc2egv 2816 spc3egv 2818 csbiebt 3084 dfiin2g 3899 sotricim 4301 ralxfrALT 4445 iunpw 4458 opelxp 4634 ssrel 4692 ssrel2 4694 ssrelrel 4704 iss 4930 funcnvuni 5257 fun11iun 5453 tfrlem8 6286 eroveu 6592 fundmen 6772 nneneq 6823 fidifsnen 6836 prarloclem5 7441 prarloc 7444 recexprlemss1l 7576 recexprlemss1u 7577 uzin 9498 indstr 9531 elfzmlbp 10067 |
Copyright terms: Public domain | W3C validator |