| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 981 ax11i 1760 equsex 1774 eleq1a 2301 ceqsalg 2828 cgsexg 2835 cgsex2g 2836 cgsex4g 2837 ceqsex 2838 spc2egv 2893 spc3egv 2895 csbiebt 3164 dfiin2g 3998 sotricim 4414 ralxfrALT 4558 iunpw 4571 opelxp 4749 ssrel 4807 ssrel2 4809 ssrelrel 4819 iss 5051 funcnvuni 5390 fun11iun 5593 tfrlem8 6464 eroveu 6773 fundmen 6959 nneneq 7018 fidifsnen 7032 prarloclem5 7687 prarloc 7690 recexprlemss1l 7822 recexprlemss1u 7823 uzin 9755 indstr 9788 elfzmlbp 10328 swrdnd 11191 |
| Copyright terms: Public domain | W3C validator |