| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 977 ax11i 1728 equsex 1742 eleq1a 2268 ceqsalg 2791 cgsexg 2798 cgsex2g 2799 cgsex4g 2800 ceqsex 2801 spc2egv 2854 spc3egv 2856 csbiebt 3124 dfiin2g 3949 sotricim 4358 ralxfrALT 4502 iunpw 4515 opelxp 4693 ssrel 4751 ssrel2 4753 ssrelrel 4763 iss 4992 funcnvuni 5327 fun11iun 5525 tfrlem8 6376 eroveu 6685 fundmen 6865 nneneq 6918 fidifsnen 6931 prarloclem5 7567 prarloc 7570 recexprlemss1l 7702 recexprlemss1u 7703 uzin 9634 indstr 9667 elfzmlbp 10207 |
| Copyright terms: Public domain | W3C validator |