| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 978 ax11i 1737 equsex 1751 eleq1a 2277 ceqsalg 2800 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 ceqsex 2810 spc2egv 2863 spc3egv 2865 csbiebt 3133 dfiin2g 3960 sotricim 4371 ralxfrALT 4515 iunpw 4528 opelxp 4706 ssrel 4764 ssrel2 4766 ssrelrel 4776 iss 5006 funcnvuni 5344 fun11iun 5545 tfrlem8 6406 eroveu 6715 fundmen 6900 nneneq 6956 fidifsnen 6969 prarloclem5 7615 prarloc 7618 recexprlemss1l 7750 recexprlemss1u 7751 uzin 9683 indstr 9716 elfzmlbp 10256 swrdnd 11115 |
| Copyright terms: Public domain | W3C validator |