| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version | ||
| Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | syl5ibrcom 157 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biimparc 299 pm5.32 453 oplem1 978 ax11i 1737 equsex 1751 eleq1a 2277 ceqsalg 2800 cgsexg 2807 cgsex2g 2808 cgsex4g 2809 ceqsex 2810 spc2egv 2863 spc3egv 2865 csbiebt 3133 dfiin2g 3960 sotricim 4370 ralxfrALT 4514 iunpw 4527 opelxp 4705 ssrel 4763 ssrel2 4765 ssrelrel 4775 iss 5005 funcnvuni 5343 fun11iun 5543 tfrlem8 6404 eroveu 6713 fundmen 6898 nneneq 6954 fidifsnen 6967 prarloclem5 7613 prarloc 7616 recexprlemss1l 7748 recexprlemss1u 7749 uzin 9681 indstr 9714 elfzmlbp 10254 swrdnd 11112 |
| Copyright terms: Public domain | W3C validator |