Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biimprcd | GIF version |
Description: Deduce a converse commuted implication from a logical equivalence. (Contributed by NM, 3-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
biimpcd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
biimprcd | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
2 | biimpcd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | syl5ibrcom 156 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: biimparc 297 pm5.32 450 oplem1 970 ax11i 1707 equsex 1721 eleq1a 2242 ceqsalg 2758 cgsexg 2765 cgsex2g 2766 cgsex4g 2767 ceqsex 2768 spc2egv 2820 spc3egv 2822 csbiebt 3088 dfiin2g 3906 sotricim 4308 ralxfrALT 4452 iunpw 4465 opelxp 4641 ssrel 4699 ssrel2 4701 ssrelrel 4711 iss 4937 funcnvuni 5267 fun11iun 5463 tfrlem8 6297 eroveu 6604 fundmen 6784 nneneq 6835 fidifsnen 6848 prarloclem5 7462 prarloc 7465 recexprlemss1l 7597 recexprlemss1u 7598 uzin 9519 indstr 9552 elfzmlbp 10088 |
Copyright terms: Public domain | W3C validator |