Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cgsexg | GIF version |
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.) |
Ref | Expression |
---|---|
cgsexg.1 | ⊢ (𝑥 = 𝐴 → 𝜒) |
cgsexg.2 | ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cgsexg | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgsexg.2 | . . . 4 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpa 294 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜓) |
3 | 2 | exlimiv 1586 | . 2 ⊢ (∃𝑥(𝜒 ∧ 𝜑) → 𝜓) |
4 | elisset 2740 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
5 | cgsexg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝜒) | |
6 | 5 | eximi 1588 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜒) |
7 | 4, 6 | syl 14 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥𝜒) |
8 | 1 | biimprcd 159 | . . . . 5 ⊢ (𝜓 → (𝜒 → 𝜑)) |
9 | 8 | ancld 323 | . . . 4 ⊢ (𝜓 → (𝜒 → (𝜒 ∧ 𝜑))) |
10 | 9 | eximdv 1868 | . . 3 ⊢ (𝜓 → (∃𝑥𝜒 → ∃𝑥(𝜒 ∧ 𝜑))) |
11 | 7, 10 | syl5com 29 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥(𝜒 ∧ 𝜑))) |
12 | 3, 11 | impbid2 142 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝜒 ∧ 𝜑) ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∃wex 1480 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |