ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexgv GIF version

Theorem ceqsexgv 2890
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
Hypothesis
Ref Expression
ceqsexgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexgv (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ceqsexgv
StepHypRef Expression
1 nfv 1539 . 2 𝑥𝜓
2 ceqsexgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2ceqsexg 2889 1 (𝐴𝑉 → (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  ceqsrexv  2891  clel3g  2895  elxp4  5154  elxp5  5155  dmfco  5626  fndmdif  5664  fndmin  5666  fmptco  5725  rexrnmpo  6035  brtpos2  6306  xpsnen  6877  prarloc  7565  pceu  12436  4sqlem12  12543  znleval  14152  metrest  14685
  Copyright terms: Public domain W3C validator