ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comraddd GIF version

Theorem comraddd 8299
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1 (𝜑𝐵 ∈ ℂ)
comraddd.2 (𝜑𝐶 ∈ ℂ)
comraddd.3 (𝜑𝐴 = (𝐵 + 𝐶))
Assertion
Ref Expression
comraddd (𝜑𝐴 = (𝐶 + 𝐵))

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2 (𝜑𝐴 = (𝐵 + 𝐶))
2 comraddd.1 . . 3 (𝜑𝐵 ∈ ℂ)
3 comraddd.2 . . 3 (𝜑𝐶 ∈ ℂ)
42, 3addcomd 8293 . 2 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
51, 4eqtrd 2262 1 (𝜑𝐴 = (𝐶 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211  ax-addcom 8095
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  mvrladdd  8509  hashfz  11038  bdtrilem  11745  clim2ser2  11844  fsumparts  11976  arisum  12004  divalglemnn  12424  phiprmpw  12739  mulgdir  13686  metrtri  15045  apdifflemr  16374
  Copyright terms: Public domain W3C validator