ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  comraddd GIF version

Theorem comraddd 8178
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
comraddd.1 (𝜑𝐵 ∈ ℂ)
comraddd.2 (𝜑𝐶 ∈ ℂ)
comraddd.3 (𝜑𝐴 = (𝐵 + 𝐶))
Assertion
Ref Expression
comraddd (𝜑𝐴 = (𝐶 + 𝐵))

Proof of Theorem comraddd
StepHypRef Expression
1 comraddd.3 . 2 (𝜑𝐴 = (𝐵 + 𝐶))
2 comraddd.1 . . 3 (𝜑𝐵 ∈ ℂ)
3 comraddd.2 . . 3 (𝜑𝐶 ∈ ℂ)
42, 3addcomd 8172 . 2 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
51, 4eqtrd 2226 1 (𝜑𝐴 = (𝐶 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872   + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175  ax-addcom 7974
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by:  mvrladdd  8388  hashfz  10895  bdtrilem  11385  clim2ser2  11484  fsumparts  11616  arisum  11644  divalglemnn  12062  phiprmpw  12363  mulgdir  13227  metrtri  14556  apdifflemr  15607
  Copyright terms: Public domain W3C validator