| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > comraddd | GIF version | ||
| Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) | 
| comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | 
| Ref | Expression | 
|---|---|
| comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 2, 3 | addcomd 8177 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) | 
| 5 | 1, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7979 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: mvrladdd 8393 hashfz 10913 bdtrilem 11404 clim2ser2 11503 fsumparts 11635 arisum 11663 divalglemnn 12083 phiprmpw 12390 mulgdir 13284 metrtri 14613 apdifflemr 15691 | 
| Copyright terms: Public domain | W3C validator |