![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > comraddd | GIF version |
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 2, 3 | addcomd 7784 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
5 | 1, 4 | eqtrd 2132 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∈ wcel 1448 (class class class)co 5706 ℂcc 7498 + caddc 7503 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 ax-ext 2082 ax-addcom 7595 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 |
This theorem is referenced by: hashfz 10408 bdtrilem 10849 clim2ser2 10946 fsumparts 11078 arisum 11106 divalglemnn 11410 phiprmpw 11690 metrtri 12305 |
Copyright terms: Public domain | W3C validator |