| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comraddd | GIF version | ||
| Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 2, 3 | addcomd 8194 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
| 5 | 1, 4 | eqtrd 2229 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 ax-addcom 7996 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: mvrladdd 8410 hashfz 10930 bdtrilem 11421 clim2ser2 11520 fsumparts 11652 arisum 11680 divalglemnn 12100 phiprmpw 12415 mulgdir 13360 metrtri 14697 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |