![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > comraddd | GIF version |
Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | 2, 3 | addcomd 8172 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
5 | 1, 4 | eqtrd 2226 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 ax-addcom 7974 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: mvrladdd 8388 hashfz 10895 bdtrilem 11385 clim2ser2 11484 fsumparts 11616 arisum 11644 divalglemnn 12062 phiprmpw 12363 mulgdir 13227 metrtri 14556 apdifflemr 15607 |
Copyright terms: Public domain | W3C validator |