| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > comraddd | GIF version | ||
| Description: Commute RHS addition, in deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| comraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| comraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| comraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| comraddd | ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comraddd.3 | . 2 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 2 | comraddd.1 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | comraddd.2 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | 2, 3 | addcomd 8243 | . 2 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
| 5 | 1, 4 | eqtrd 2239 | 1 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5957 ℂcc 7943 + caddc 7948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 ax-addcom 8045 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: mvrladdd 8459 hashfz 10988 bdtrilem 11625 clim2ser2 11724 fsumparts 11856 arisum 11884 divalglemnn 12304 phiprmpw 12619 mulgdir 13565 metrtri 14924 apdifflemr 16127 |
| Copyright terms: Public domain | W3C validator |