| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim2ser2 | GIF version | ||
| Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| Ref | Expression |
|---|---|
| clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim2ser.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| clim2ser.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| clim2ser2.5 | ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) |
| Ref | Expression |
|---|---|
| clim2ser2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
| 2 | clim2ser.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 3 | clim2ser.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrdi 2299 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | peano2uz 9717 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| 7 | eluzelz 9670 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 9 | clim2ser2.5 | . 2 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) | |
| 10 | eluzel2 9666 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 11 | 4, 10 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 12 | clim2ser.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 13 | 3, 11, 12 | serf 10641 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 14 | 13, 2 | ffvelcdmd 5726 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 15 | seqex 10607 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
| 16 | 15 | a1i 9 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
| 17 | 6, 3 | eleqtrrdi 2300 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
| 18 | 3 | uztrn2 9679 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 19 | 17, 18 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 20 | 19, 12 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
| 21 | 1, 8, 20 | serf 10641 | . . 3 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
| 22 | 21 | ffvelcdmda 5725 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ) |
| 23 | 14 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 24 | addcl 8063 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
| 25 | 24 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
| 26 | addass 8068 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) | |
| 27 | 26 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) |
| 28 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) | |
| 29 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 30 | 3 | eleq2i 2273 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 31 | 30, 12 | sylan2br 288 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 32 | 31 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 33 | 25, 27, 28, 29, 32 | seq3split 10646 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗))) |
| 34 | 23, 22, 33 | comraddd 8242 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁))) |
| 35 | 1, 8, 9, 14, 16, 22, 34 | climaddc1 11690 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 Vcvv 2773 class class class wbr 4048 ‘cfv 5277 (class class class)co 5954 ℂcc 7936 1c1 7939 + caddc 7941 ℤcz 9385 ℤ≥cuz 9661 seqcseq 10605 ⇝ cli 11639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-rp 9789 df-fz 10144 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 |
| This theorem is referenced by: iserex 11700 |
| Copyright terms: Public domain | W3C validator |