![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > clim2ser2 | GIF version |
Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
clim2ser.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
clim2ser.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
clim2ser2.5 | ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) |
Ref | Expression |
---|---|
clim2ser2 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
2 | clim2ser.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | clim2ser.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2270 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | peano2uz 9582 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
7 | eluzelz 9536 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
9 | clim2ser2.5 | . 2 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴) | |
10 | eluzel2 9532 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
11 | 4, 10 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | clim2ser.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
13 | 3, 11, 12 | serf 10473 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
14 | 13, 2 | ffvelcdmd 5652 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
15 | seqex 10446 | . . 3 ⊢ seq𝑀( + , 𝐹) ∈ V | |
16 | 15 | a1i 9 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ V) |
17 | 6, 3 | eleqtrrdi 2271 | . . . . . 6 ⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
18 | 3 | uztrn2 9544 | . . . . . 6 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
19 | 17, 18 | sylan 283 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
20 | 19, 12 | syldan 282 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
21 | 1, 8, 20 | serf 10473 | . . 3 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
22 | 21 | ffvelcdmda 5651 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ) |
23 | 14 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
24 | addcl 7935 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
25 | 24 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
26 | addass 7940 | . . . . 5 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) | |
27 | 26 | adantl 277 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) |
28 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) | |
29 | 4 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
30 | 3 | eleq2i 2244 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
31 | 30, 12 | sylan2br 288 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
32 | 31 | adantlr 477 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
33 | 25, 27, 28, 29, 32 | seq3split 10478 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗))) |
34 | 23, 22, 33 | comraddd 8113 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁))) |
35 | 1, 8, 9, 14, 16, 22, 34 | climaddc1 11336 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 Vcvv 2737 class class class wbr 4003 ‘cfv 5216 (class class class)co 5874 ℂcc 7808 1c1 7811 + caddc 7813 ℤcz 9252 ℤ≥cuz 9527 seqcseq 10444 ⇝ cli 11285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-mulrcl 7909 ax-addcom 7910 ax-mulcom 7911 ax-addass 7912 ax-mulass 7913 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-1rid 7917 ax-0id 7918 ax-rnegex 7919 ax-precex 7920 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-apti 7925 ax-pre-ltadd 7926 ax-pre-mulgt0 7927 ax-pre-mulext 7928 ax-arch 7929 ax-caucvg 7930 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-po 4296 df-iso 4297 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-1st 6140 df-2nd 6141 df-recs 6305 df-frec 6391 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-reap 8531 df-ap 8538 df-div 8629 df-inn 8919 df-2 8977 df-3 8978 df-4 8979 df-n0 9176 df-z 9253 df-uz 9528 df-rp 9653 df-fz 10008 df-seqfrec 10445 df-exp 10519 df-cj 10850 df-re 10851 df-im 10852 df-rsqrt 11006 df-abs 11007 df-clim 11286 |
This theorem is referenced by: iserex 11346 |
Copyright terms: Public domain | W3C validator |