ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim2ser2 GIF version

Theorem clim2ser2 11345
Description: The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
clim2ser.2 (𝜑𝑁𝑍)
clim2ser.4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
clim2ser2.5 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴)
Assertion
Ref Expression
clim2ser2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑍

Proof of Theorem clim2ser2
Dummy variables 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2 (ℤ‘(𝑁 + 1)) = (ℤ‘(𝑁 + 1))
2 clim2ser.2 . . . . 5 (𝜑𝑁𝑍)
3 clim2ser.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2270 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 peano2uz 9582 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
64, 5syl 14 . . 3 (𝜑 → (𝑁 + 1) ∈ (ℤ𝑀))
7 eluzelz 9536 . . 3 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ ℤ)
86, 7syl 14 . 2 (𝜑 → (𝑁 + 1) ∈ ℤ)
9 clim2ser2.5 . 2 (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴)
10 eluzel2 9532 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
114, 10syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
12 clim2ser.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
133, 11, 12serf 10473 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1413, 2ffvelcdmd 5652 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
15 seqex 10446 . . 3 seq𝑀( + , 𝐹) ∈ V
1615a1i 9 . 2 (𝜑 → seq𝑀( + , 𝐹) ∈ V)
176, 3eleqtrrdi 2271 . . . . . 6 (𝜑 → (𝑁 + 1) ∈ 𝑍)
183uztrn2 9544 . . . . . 6 (((𝑁 + 1) ∈ 𝑍𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
1917, 18sylan 283 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘𝑍)
2019, 12syldan 282 . . . 4 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝐹𝑘) ∈ ℂ)
211, 8, 20serf 10473 . . 3 (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ‘(𝑁 + 1))⟶ℂ)
2221ffvelcdmda 5651 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ)
2314adantr 276 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ)
24 addcl 7935 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ)
2524adantl 277 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ)
26 addass 7940 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
2726adantl 277 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦)))
28 simpr 110 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑗 ∈ (ℤ‘(𝑁 + 1)))
294adantr 276 . . . 4 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ𝑀))
303eleq2i 2244 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
3130, 12sylan2br 288 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3231adantlr 477 . . . 4 (((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
3325, 27, 28, 29, 32seq3split 10478 . . 3 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)))
3423, 22, 33comraddd 8113 . 2 ((𝜑𝑗 ∈ (ℤ‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq(𝑁 + 1)( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐹)‘𝑁)))
351, 8, 9, 14, 16, 22, 34climaddc1 11336 1 (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  Vcvv 2737   class class class wbr 4003  cfv 5216  (class class class)co 5874  cc 7808  1c1 7811   + caddc 7813  cz 9252  cuz 9527  seqcseq 10444  cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-fz 10008  df-seqfrec 10445  df-exp 10519  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by:  iserex  11346
  Copyright terms: Public domain W3C validator