ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtrilem GIF version

Theorem bdtrilem 10849
Description: Lemma for bdtri 10850. (Contributed by Steven Nguyen and Jim Kingdon, 17-May-2023.)
Assertion
Ref Expression
bdtrilem (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))

Proof of Theorem bdtrilem
StepHypRef Expression
1 simp1l 973 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ)
2 simp3 951 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ+)
32rpred 9330 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
41, 3resubcld 8010 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℝ)
54resqcld 10291 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐶)↑2) ∈ ℝ)
6 2re 8648 . . . . . . . . . . . 12 2 ∈ ℝ
76a1i 9 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℝ)
81recnd 7666 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
92rpcnd 9332 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
108, 9subcld 7944 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴𝐶) ∈ ℂ)
1110abscld 10793 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℝ)
12 simp2l 975 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ)
1312recnd 7666 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
1413, 9subcld 7944 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℂ)
1514abscld 10793 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℝ)
1611, 15remulcld 7668 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) ∈ ℝ)
177, 16remulcld 7668 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶)))) ∈ ℝ)
185, 17readdcld 7667 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) ∈ ℝ)
191, 12remulcld 7668 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ)
207, 19remulcld 7668 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐴 · 𝐵)) ∈ ℝ)
218, 13addcld 7657 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ)
2221, 9subcld 7944 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ)
2322abscld 10793 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ)
243, 23remulcld 7668 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
257, 24remulcld 7668 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℝ)
2620, 25readdcld 7667 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) ∈ ℝ)
275, 26readdcld 7667 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) ∈ ℝ)
2812, 3resubcld 8010 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵𝐶) ∈ ℝ)
2928resqcld 10291 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵𝐶)↑2) ∈ ℝ)
3019, 24readdcld 7667 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℝ)
31 0le2 8668 . . . . . . . . . . . . 13 0 ≤ 2
3231a1i 9 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 2)
338, 9, 13, 9mulsubd 8046 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐶) · (𝐵𝐶)) = (((𝐴 · 𝐵) + (𝐶 · 𝐶)) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
3419recnd 7666 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℂ)
359, 9mulcld 7658 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · 𝐶) ∈ ℂ)
368, 9mulcld 7658 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ)
3713, 9mulcld 7658 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℂ)
3836, 37addcld 7657 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) ∈ ℂ)
3934, 35, 38addsubassd 7964 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 · 𝐵) + (𝐶 · 𝐶)) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) = ((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))
4033, 39eqtrd 2132 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐶) · (𝐵𝐶)) = ((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))
4140fveq2d 5357 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴𝐶) · (𝐵𝐶))) = (abs‘((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))))
4235, 38subcld 7944 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) ∈ ℂ)
4334, 42abstrid 10808 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) ≤ ((abs‘(𝐴 · 𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))))
4441, 43eqbrtrd 3895 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴𝐶) · (𝐵𝐶))) ≤ ((abs‘(𝐴 · 𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))))
45 simp1r 974 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐴)
46 simp2r 976 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐵)
471, 12, 45, 46mulge0d 8249 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐴 · 𝐵))
4819, 47absidd 10779 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴 · 𝐵)) = (𝐴 · 𝐵))
499, 21subcld 7944 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − (𝐴 + 𝐵)) ∈ ℂ)
5049, 9absmuld 10806 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐶 − (𝐴 + 𝐵)) · 𝐶)) = ((abs‘(𝐶 − (𝐴 + 𝐵))) · (abs‘𝐶)))
519, 21, 9subdird 8044 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 − (𝐴 + 𝐵)) · 𝐶) = ((𝐶 · 𝐶) − ((𝐴 + 𝐵) · 𝐶)))
528, 13, 9adddird 7663 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
5352oveq2d 5722 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 · 𝐶) − ((𝐴 + 𝐵) · 𝐶)) = ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
5451, 53eqtrd 2132 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 − (𝐴 + 𝐵)) · 𝐶) = ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
5554fveq2d 5357 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐶 − (𝐴 + 𝐵)) · 𝐶)) = (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))
569, 21abssubd 10805 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐶 − (𝐴 + 𝐵))) = (abs‘((𝐴 + 𝐵) − 𝐶)))
572rpge0d 9334 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ 𝐶)
583, 57absidd 10779 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘𝐶) = 𝐶)
5956, 58oveq12d 5724 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐶 − (𝐴 + 𝐵))) · (abs‘𝐶)) = ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶))
6050, 55, 593eqtr3d 2140 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) = ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶))
6148, 60oveq12d 5724 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴 · 𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) = ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)))
6244, 61breqtrd 3899 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴𝐶) · (𝐵𝐶))) ≤ ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)))
6310, 14absmuld 10806 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴𝐶) · (𝐵𝐶))) = ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))
6423recnd 7666 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ)
6564, 9mulcomd 7659 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶) = (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))
6665oveq2d 5722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)) = ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))
6762, 63, 663brtr3d 3904 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))) ≤ ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))
6816, 30, 7, 32, 67lemul2ad 8556 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶)))) ≤ (2 · ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
697recnd 7666 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈ ℂ)
709, 64mulcld 7658 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℂ)
7169, 34, 70adddid 7662 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
7268, 71breqtrd 3899 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶)))) ≤ ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
7317, 26, 5, 72leadd2dd 8188 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) ≤ (((𝐴𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))))
7418, 27, 29, 73leadd1dd 8187 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)) ≤ ((((𝐴𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) + ((𝐵𝐶)↑2)))
755recnd 7666 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐶)↑2) ∈ ℂ)
7626recnd 7666 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) ∈ ℂ)
7729recnd 7666 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵𝐶)↑2) ∈ ℂ)
7875, 76, 77add32d 7801 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) + ((𝐵𝐶)↑2)) = ((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))))
7974, 78breqtrd 3899 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)) ≤ ((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))))
8075, 77addcld 7657 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) ∈ ℂ)
8169, 34mulcld 7658 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
8269, 70mulcld 7658 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℂ)
8380, 81, 82addassd 7660 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = ((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))))
8479, 83breqtrrd 3901 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)) ≤ (((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
858sqcld 10263 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴↑2) ∈ ℂ)
8669, 36mulcld 7658 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐴 · 𝐶)) ∈ ℂ)
8785, 86subcld 7944 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) − (2 · (𝐴 · 𝐶))) ∈ ℂ)
889sqcld 10263 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶↑2) ∈ ℂ)
8987, 88addcld 7657 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) ∈ ℂ)
9089, 81addcld 7657 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
9113sqcld 10263 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵↑2) ∈ ℂ)
9269, 37mulcld 7658 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
9391, 92subcld 7944 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − (2 · (𝐵 · 𝐶))) ∈ ℂ)
9490, 93addcld 7657 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) ∈ ℂ)
9593, 88addcld 7657 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)) ∈ ℂ)
9689, 95, 81add32d 7801 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))))
9790, 93, 88addassd 7660 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) + (𝐶↑2)) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))))
9896, 97eqtr4d 2135 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))
9994, 88, 98comraddd 7790 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))
10081, 93addcld 7657 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) ∈ ℂ)
10187, 100addcld 7657 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) ∈ ℂ)
10289, 81, 93addassd 7660 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))
10387, 88addcomd 7784 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) = ((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))))
104103oveq1d 5721 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))
105102, 104eqtrd 2132 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))
10688, 87, 100addassd 7660 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((𝐶↑2) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))))
107105, 106eqtrd 2132 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐶↑2) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))))
10888, 101, 107comraddd 7790 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) + (𝐶↑2)))
10985, 86, 93subadd23d 7966 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐴↑2) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶)))))
11091, 92, 86subsub4d 7975 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶))) = ((𝐵↑2) − ((2 · (𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶)))))
11192, 86addcomd 7784 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶))) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))
112111oveq2d 5722 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − ((2 · (𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶)))) = ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))
113110, 112eqtrd 2132 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶))) = ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))
114113oveq2d 5722 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶)))) = ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))))
115109, 114eqtrd 2132 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))))
116115oveq2d 5722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐴 · 𝐵)) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((2 · (𝐴 · 𝐵)) + ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))))
11787, 81, 93add12d 7800 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((2 · (𝐴 · 𝐵)) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))
11886, 92addcld 7657 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))) ∈ ℂ)
11991, 118subcld 7944 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) ∈ ℂ)
12085, 119addcld 7657 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) ∈ ℂ)
12185, 81addcld 7657 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
122121, 91, 118addsubassd 7964 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))))
12385, 81, 119add32d 7801 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) = (((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) + (2 · (𝐴 · 𝐵))))
124122, 123eqtrd 2132 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = (((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) + (2 · (𝐴 · 𝐵))))
125120, 81, 124comraddd 7790 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = ((2 · (𝐴 · 𝐵)) + ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))))
126116, 117, 1253eqtr4d 2142 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))
127126oveq1d 5721 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) + (𝐶↑2)) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))
128108, 127eqtrd 2132 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))
129128oveq2d 5722 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶↑2) + (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))))
13099, 129eqtrd 2132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))))
131 binom2sub 10246 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴𝐶)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)))
1328, 9, 131syl2anc 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴𝐶)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)))
133 binom2sub 10246 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶)↑2) = (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
13413, 9, 133syl2anc 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵𝐶)↑2) = (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)))
135132, 134oveq12d 5724 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))))
136135oveq1d 5721 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + (2 · (𝐴 · 𝐵))) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))))
137 binom2sub 10246 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐶)↑2) = ((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2)))
13821, 9, 137syl2anc 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) = ((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2)))
139 binom2 10244 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1408, 13, 139syl2anc 406 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
14152oveq2d 5722 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((𝐴 + 𝐵) · 𝐶)) = (2 · ((𝐴 · 𝐶) + (𝐵 · 𝐶))))
14269, 36, 37adddid 7662 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((𝐴 · 𝐶) + (𝐵 · 𝐶))) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))
143141, 142eqtrd 2132 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2 · ((𝐴 + 𝐵) · 𝐶)) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))
144140, 143oveq12d 5724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))
145144oveq1d 5721 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2)) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))
146138, 145eqtrd 2132 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))
147146oveq2d 5722 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))))
148130, 136, 1473eqtr4d 2142 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)))
149148oveq1d 5721 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((((𝐴𝐶)↑2) + ((𝐵𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
15084, 149breqtrd 3899 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)) ≤ (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))
15122sqcld 10263 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) ∈ ℂ)
15288, 151, 82add32d 7801 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2)))
153150, 152breqtrd 3899 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)) ≤ (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2)))
154 absresq 10690 . . . . . . 7 ((𝐴𝐶) ∈ ℝ → ((abs‘(𝐴𝐶))↑2) = ((𝐴𝐶)↑2))
1554, 154syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶))↑2) = ((𝐴𝐶)↑2))
156155oveq1d 5721 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶))↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) = (((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))))
157 absresq 10690 . . . . . 6 ((𝐵𝐶) ∈ ℝ → ((abs‘(𝐵𝐶))↑2) = ((𝐵𝐶)↑2))
15828, 157syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐵𝐶))↑2) = ((𝐵𝐶)↑2))
159156, 158oveq12d 5724 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶))↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((abs‘(𝐵𝐶))↑2)) = ((((𝐴𝐶)↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((𝐵𝐶)↑2)))
1601, 12readdcld 7667 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ)
161160, 3resubcld 8010 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℝ)
162 absresq 10690 . . . . . 6 (((𝐴 + 𝐵) − 𝐶) ∈ ℝ → ((abs‘((𝐴 + 𝐵) − 𝐶))↑2) = (((𝐴 + 𝐵) − 𝐶)↑2))
163161, 162syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘((𝐴 + 𝐵) − 𝐶))↑2) = (((𝐴 + 𝐵) − 𝐶)↑2))
164163oveq2d 5722 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2)) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2)))
165153, 159, 1643brtr4d 3905 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((((abs‘(𝐴𝐶))↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((abs‘(𝐵𝐶))↑2)) ≤ (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2)))
16611recnd 7666 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐴𝐶)) ∈ ℂ)
16715recnd 7666 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (abs‘(𝐵𝐶)) ∈ ℂ)
168 binom2 10244 . . . 4 (((abs‘(𝐴𝐶)) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℂ) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((abs‘(𝐵𝐶))↑2)))
169166, 167, 168syl2anc 406 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))↑2) = ((((abs‘(𝐴𝐶))↑2) + (2 · ((abs‘(𝐴𝐶)) · (abs‘(𝐵𝐶))))) + ((abs‘(𝐵𝐶))↑2)))
170 binom2 10244 . . . 4 ((𝐶 ∈ ℂ ∧ (abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ) → ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2)))
1719, 64, 170syl2anc 406 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2)))
172165, 169, 1713brtr4d 3905 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))↑2) ≤ ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2))
17311, 15readdcld 7667 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ∈ ℝ)
1743, 23readdcld 7667 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ)
17510absge0d 10796 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ (abs‘(𝐴𝐶)))
17614absge0d 10796 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ (abs‘(𝐵𝐶)))
17711, 15, 175, 176addge0d 8150 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))))
17822absge0d 10796 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ (abs‘((𝐴 + 𝐵) − 𝐶)))
1793, 23, 57, 178addge0d 8150 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
180173, 174, 177, 179le2sqd 10297 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))) ↔ (((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶)))↑2) ≤ ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2)))
181172, 180mpbird 166 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((abs‘(𝐴𝐶)) + (abs‘(𝐵𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 930   = wceq 1299  wcel 1448   class class class wbr 3875  cfv 5059  (class class class)co 5706  cc 7498  cr 7499  0cc0 7500   + caddc 7503   · cmul 7505  cle 7673  cmin 7804  2c2 8629  +crp 9291  cexp 10133  abscabs 10609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611
This theorem is referenced by:  bdtri  10850
  Copyright terms: Public domain W3C validator