Proof of Theorem bdtrilem
Step | Hyp | Ref
| Expression |
1 | | simp1l 1016 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈
ℝ) |
2 | | simp3 994 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℝ+) |
3 | 2 | rpred 9653 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℝ) |
4 | 1, 3 | resubcld 8300 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 − 𝐶) ∈ ℝ) |
5 | 4 | resqcld 10635 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 − 𝐶)↑2) ∈ ℝ) |
6 | | 2re 8948 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℝ |
7 | 6 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈
ℝ) |
8 | 1 | recnd 7948 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈
ℂ) |
9 | 2 | rpcnd 9655 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈
ℂ) |
10 | 8, 9 | subcld 8230 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 − 𝐶) ∈ ℂ) |
11 | 10 | abscld 11145 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐴 − 𝐶)) ∈
ℝ) |
12 | | simp2l 1018 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈
ℝ) |
13 | 12 | recnd 7948 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈
ℂ) |
14 | 13, 9 | subcld 8230 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 − 𝐶) ∈ ℂ) |
15 | 14 | abscld 11145 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐵 − 𝐶)) ∈
ℝ) |
16 | 11, 15 | remulcld 7950 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))) ∈
ℝ) |
17 | 7, 16 | remulcld 7950 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((abs‘(𝐴
− 𝐶)) ·
(abs‘(𝐵 − 𝐶)))) ∈
ℝ) |
18 | 5, 17 | readdcld 7949 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 − 𝐶)↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶))))) ∈ ℝ) |
19 | 1, 12 | remulcld 7950 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ) |
20 | 7, 19 | remulcld 7950 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐴 · 𝐵)) ∈
ℝ) |
21 | 8, 13 | addcld 7939 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℂ) |
22 | 21, 9 | subcld 8230 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℂ) |
23 | 22 | abscld 11145 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℝ) |
24 | 3, 23 | remulcld 7950 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ) |
25 | 7, 24 | remulcld 7950 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐶 ·
(abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℝ) |
26 | 20, 25 | readdcld 7949 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) ∈ ℝ) |
27 | 5, 26 | readdcld 7949 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 − 𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) ∈ ℝ) |
28 | 12, 3 | resubcld 8300 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 − 𝐶) ∈ ℝ) |
29 | 28 | resqcld 10635 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 − 𝐶)↑2) ∈ ℝ) |
30 | 19, 24 | readdcld 7949 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℝ) |
31 | | 0le2 8968 |
. . . . . . . . . . . . 13
⊢ 0 ≤
2 |
32 | 31 | a1i 9 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
2) |
33 | 8, 9, 13, 9 | mulsubd 8336 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 − 𝐶) · (𝐵 − 𝐶)) = (((𝐴 · 𝐵) + (𝐶 · 𝐶)) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
34 | 19 | recnd 7948 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℂ) |
35 | 9, 9 | mulcld 7940 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · 𝐶) ∈ ℂ) |
36 | 8, 9 | mulcld 7940 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℂ) |
37 | 13, 9 | mulcld 7940 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵 · 𝐶) ∈ ℂ) |
38 | 36, 37 | addcld 7939 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) + (𝐵 · 𝐶)) ∈ ℂ) |
39 | 34, 35, 38 | addsubassd 8250 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 · 𝐵) + (𝐶 · 𝐶)) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) = ((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) |
40 | 33, 39 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 − 𝐶) · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) |
41 | 40 | fveq2d 5500 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 −
𝐶) · (𝐵 − 𝐶))) = (abs‘((𝐴 · 𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))) |
42 | 35, 38 | subcld 8230 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))) ∈ ℂ) |
43 | 34, 42 | abstrid 11160 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 ·
𝐵) + ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) ≤ ((abs‘(𝐴 · 𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))) |
44 | 41, 43 | eqbrtrd 4011 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 −
𝐶) · (𝐵 − 𝐶))) ≤ ((abs‘(𝐴 · 𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))))) |
45 | | simp1r 1017 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
𝐴) |
46 | | simp2r 1019 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
𝐵) |
47 | 1, 12, 45, 46 | mulge0d 8540 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
(𝐴 · 𝐵)) |
48 | 19, 47 | absidd 11131 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐴 ·
𝐵)) = (𝐴 · 𝐵)) |
49 | 9, 21 | subcld 8230 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 − (𝐴 + 𝐵)) ∈ ℂ) |
50 | 49, 9 | absmuld 11158 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐶 −
(𝐴 + 𝐵)) · 𝐶)) = ((abs‘(𝐶 − (𝐴 + 𝐵))) · (abs‘𝐶))) |
51 | 9, 21, 9 | subdird 8334 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 − (𝐴 + 𝐵)) · 𝐶) = ((𝐶 · 𝐶) − ((𝐴 + 𝐵) · 𝐶))) |
52 | 8, 13, 9 | adddird 7945 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶))) |
53 | 52 | oveq2d 5869 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 · 𝐶) − ((𝐴 + 𝐵) · 𝐶)) = ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
54 | 51, 53 | eqtrd 2203 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 − (𝐴 + 𝐵)) · 𝐶) = ((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
55 | 54 | fveq2d 5500 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐶 −
(𝐴 + 𝐵)) · 𝐶)) = (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) |
56 | 9, 21 | abssubd 11157 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐶 −
(𝐴 + 𝐵))) = (abs‘((𝐴 + 𝐵) − 𝐶))) |
57 | 2 | rpge0d 9657 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
𝐶) |
58 | 3, 57 | absidd 11131 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘𝐶) = 𝐶) |
59 | 56, 58 | oveq12d 5871 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐶 −
(𝐴 + 𝐵))) · (abs‘𝐶)) = ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)) |
60 | 50, 55, 59 | 3eqtr3d 2211 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐶 ·
𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) = ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)) |
61 | 48, 60 | oveq12d 5871 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 ·
𝐵)) + (abs‘((𝐶 · 𝐶) − ((𝐴 · 𝐶) + (𝐵 · 𝐶))))) = ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶))) |
62 | 44, 61 | breqtrd 4015 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 −
𝐶) · (𝐵 − 𝐶))) ≤ ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶))) |
63 | 10, 14 | absmuld 11158 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 −
𝐶) · (𝐵 − 𝐶))) = ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶)))) |
64 | 23 | recnd 7948 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ) |
65 | 64, 9 | mulcomd 7941 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶) = (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))) |
66 | 65 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) + ((abs‘((𝐴 + 𝐵) − 𝐶)) · 𝐶)) = ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) |
67 | 62, 63, 66 | 3brtr3d 4020 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))) ≤ ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) |
68 | 16, 30, 7, 32, 67 | lemul2ad 8856 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((abs‘(𝐴
− 𝐶)) ·
(abs‘(𝐵 − 𝐶)))) ≤ (2 · ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
69 | 7 | recnd 7948 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 2 ∈
ℂ) |
70 | 9, 64 | mulcld 7940 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℂ) |
71 | 69, 34, 70 | adddid 7944 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((𝐴 · 𝐵) + (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
72 | 68, 71 | breqtrd 4015 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((abs‘(𝐴
− 𝐶)) ·
(abs‘(𝐵 − 𝐶)))) ≤ ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
73 | 17, 26, 5, 72 | leadd2dd 8479 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 − 𝐶)↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶))))) ≤ (((𝐴 − 𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))) |
74 | 18, 27, 29, 73 | leadd1dd 8478 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2)) ≤ ((((𝐴 − 𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) + ((𝐵 − 𝐶)↑2))) |
75 | 5 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 − 𝐶)↑2) ∈ ℂ) |
76 | 26 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) ∈ ℂ) |
77 | 29 | recnd 7948 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 − 𝐶)↑2) ∈ ℂ) |
78 | 75, 76, 77 | add32d 8087 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) + ((𝐵 − 𝐶)↑2)) = ((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))) |
79 | 74, 78 | breqtrd 4015 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2)) ≤ ((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))) |
80 | 75, 77 | addcld 7939 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) ∈ ℂ) |
81 | 69, 34 | mulcld 7940 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐴 · 𝐵)) ∈
ℂ) |
82 | 69, 70 | mulcld 7940 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐶 ·
(abs‘((𝐴 + 𝐵) − 𝐶)))) ∈ ℂ) |
83 | 80, 81, 82 | addassd 7942 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = ((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + ((2 · (𝐴 · 𝐵)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))))) |
84 | 79, 83 | breqtrrd 4017 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2)) ≤ (((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
85 | 8 | sqcld 10607 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴↑2) ∈
ℂ) |
86 | 69, 36 | mulcld 7940 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐴 · 𝐶)) ∈
ℂ) |
87 | 85, 86 | subcld 8230 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) ∈
ℂ) |
88 | 9 | sqcld 10607 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶↑2) ∈
ℂ) |
89 | 87, 88 | addcld 7939 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + (𝐶↑2)) ∈ ℂ) |
90 | 89, 81 | addcld 7939 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ) |
91 | 13 | sqcld 10607 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐵↑2) ∈
ℂ) |
92 | 69, 37 | mulcld 7940 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· (𝐵 · 𝐶)) ∈
ℂ) |
93 | 91, 92 | subcld 8230 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − (2 ·
(𝐵 · 𝐶))) ∈
ℂ) |
94 | 90, 93 | addcld 7939 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) ∈ ℂ) |
95 | 93, 88 | addcld 7939 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 ·
(𝐵 · 𝐶))) + (𝐶↑2)) ∈ ℂ) |
96 | 89, 95, 81 | add32d 8087 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)))) |
97 | 90, 93, 88 | addassd 7942 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) + (𝐶↑2)) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)))) |
98 | 96, 97 | eqtr4d 2206 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) + (𝐶↑2))) |
99 | 94, 88, 98 | comraddd 8076 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))) |
100 | 81, 93 | addcld 7939 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) ∈ ℂ) |
101 | 87, 100 | addcld 7939 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) ∈ ℂ) |
102 | 89, 81, 93 | addassd 7942 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))) |
103 | 87, 88 | addcomd 8070 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + (𝐶↑2)) = ((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶))))) |
104 | 103 | oveq1d 5868 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))) |
105 | 102, 104 | eqtrd 2203 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))) |
106 | 88, 87, 100 | addassd 7942 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + ((𝐴↑2) − (2 · (𝐴 · 𝐶)))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((𝐶↑2) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))) |
107 | 105, 106 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐶↑2) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))))) |
108 | 88, 101, 107 | comraddd 8076 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) + (𝐶↑2))) |
109 | 85, 86, 93 | subadd23d 8252 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐴↑2) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶))))) |
110 | 91, 92, 86 | subsub4d 8261 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 ·
(𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶))) = ((𝐵↑2) − ((2 · (𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶))))) |
111 | 92, 86 | addcomd 8070 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶))) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) |
112 | 111 | oveq2d 5869 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − ((2 ·
(𝐵 · 𝐶)) + (2 · (𝐴 · 𝐶)))) = ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) |
113 | 110, 112 | eqtrd 2203 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐵↑2) − (2 ·
(𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶))) = ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) |
114 | 113 | oveq2d 5869 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) − (2 · (𝐴 · 𝐶)))) = ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))) |
115 | 109, 114 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))) |
116 | 115 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐴 · 𝐵)) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((2 · (𝐴 · 𝐵)) + ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))))) |
117 | 87, 81, 93 | add12d 8086 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((2 · (𝐴 · 𝐵)) + (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))))) |
118 | 86, 92 | addcld 7939 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((2
· (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))) ∈ ℂ) |
119 | 91, 118 | subcld 8230 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵↑2) − ((2 ·
(𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) ∈ ℂ) |
120 | 85, 119 | addcld 7939 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) ∈ ℂ) |
121 | 85, 81 | addcld 7939 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ) |
122 | 121, 91, 118 | addsubassd 8250 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) + (2 ·
(𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))))) |
123 | 85, 81, 119 | add32d 8087 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) = (((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) + (2 · (𝐴 · 𝐵)))) |
124 | 122, 123 | eqtrd 2203 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) + (2 ·
(𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = (((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) + (2 · (𝐴 · 𝐵)))) |
125 | 120, 81, 124 | comraddd 8076 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) + (2 ·
(𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) = ((2 · (𝐴 · 𝐵)) + ((𝐴↑2) + ((𝐵↑2) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))))) |
126 | 116, 117,
125 | 3eqtr4d 2213 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) |
127 | 126 | oveq1d 5868 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + ((2 · (𝐴 · 𝐵)) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) + (𝐶↑2)) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))) |
128 | 108, 127 | eqtrd 2203 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶)))) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))) |
129 | 128 | oveq2d 5869 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶↑2) + (((((𝐴↑2) − (2 ·
(𝐴 · 𝐶))) + (𝐶↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) − (2 · (𝐵 · 𝐶))))) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))) |
130 | 99, 129 | eqtrd 2203 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴↑2) − (2
· (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))) |
131 | | binom2sub 10589 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2))) |
132 | 8, 9, 131 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 − 𝐶)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2))) |
133 | | binom2sub 10589 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶)↑2) = (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) |
134 | 13, 9, 133 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐵 − 𝐶)↑2) = (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) |
135 | 132, 134 | oveq12d 5871 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) = ((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2)))) |
136 | 135 | oveq1d 5868 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + (2 · (𝐴 · 𝐵))) = (((((𝐴↑2) − (2 · (𝐴 · 𝐶))) + (𝐶↑2)) + (((𝐵↑2) − (2 · (𝐵 · 𝐶))) + (𝐶↑2))) + (2 · (𝐴 · 𝐵)))) |
137 | | binom2sub 10589 |
. . . . . . . . . . 11
⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐶)↑2) = ((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2))) |
138 | 21, 9, 137 | syl2anc 409 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) = ((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2))) |
139 | | binom2 10587 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
140 | 8, 13, 139 | syl2anc 409 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2))) |
141 | 52 | oveq2d 5869 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((𝐴 + 𝐵) · 𝐶)) = (2 · ((𝐴 · 𝐶) + (𝐵 · 𝐶)))) |
142 | 69, 36, 37 | adddid 7944 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((𝐴 · 𝐶) + (𝐵 · 𝐶))) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) |
143 | 141, 142 | eqtrd 2203 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (2
· ((𝐴 + 𝐵) · 𝐶)) = ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) |
144 | 140, 143 | oveq12d 5871 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶))))) |
145 | 144 | oveq1d 5868 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 + 𝐵)↑2) − (2 · ((𝐴 + 𝐵) · 𝐶))) + (𝐶↑2)) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))) |
146 | 138, 145 | eqtrd 2203 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) = (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2))) |
147 | 146 | oveq2d 5869 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) = ((𝐶↑2) + (((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − ((2 · (𝐴 · 𝐶)) + (2 · (𝐵 · 𝐶)))) + (𝐶↑2)))) |
148 | 130, 136,
147 | 3eqtr4d 2213 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + (2 · (𝐴 · 𝐵))) = ((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2))) |
149 | 148 | oveq1d 5868 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((((𝐴 − 𝐶)↑2) + ((𝐵 − 𝐶)↑2)) + (2 · (𝐴 · 𝐵))) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
150 | 84, 149 | breqtrd 4015 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2)) ≤ (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶)))))) |
151 | 22 | sqcld 10607 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐴 + 𝐵) − 𝐶)↑2) ∈ ℂ) |
152 | 88, 151, 82 | add32d 8087 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + (((𝐴 + 𝐵) − 𝐶)↑2)) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2))) |
153 | 150, 152 | breqtrd 4015 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((𝐴 − 𝐶)↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2)) ≤ (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2))) |
154 | | absresq 11042 |
. . . . . . 7
⊢ ((𝐴 − 𝐶) ∈ ℝ → ((abs‘(𝐴 − 𝐶))↑2) = ((𝐴 − 𝐶)↑2)) |
155 | 4, 154 | syl 14 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶))↑2) = ((𝐴 − 𝐶)↑2)) |
156 | 155 | oveq1d 5868 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((abs‘(𝐴 −
𝐶))↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) = (((𝐴 − 𝐶)↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶)))))) |
157 | | absresq 11042 |
. . . . . 6
⊢ ((𝐵 − 𝐶) ∈ ℝ → ((abs‘(𝐵 − 𝐶))↑2) = ((𝐵 − 𝐶)↑2)) |
158 | 28, 157 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐵 −
𝐶))↑2) = ((𝐵 − 𝐶)↑2)) |
159 | 156, 158 | oveq12d 5871 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((abs‘(𝐴 −
𝐶))↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((abs‘(𝐵 − 𝐶))↑2)) = ((((𝐴 − 𝐶)↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶))))) + ((𝐵 − 𝐶)↑2))) |
160 | 1, 12 | readdcld 7949 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐴 + 𝐵) ∈ ℝ) |
161 | 160, 3 | resubcld 8300 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐴 + 𝐵) − 𝐶) ∈ ℝ) |
162 | | absresq 11042 |
. . . . . 6
⊢ (((𝐴 + 𝐵) − 𝐶) ∈ ℝ → ((abs‘((𝐴 + 𝐵) − 𝐶))↑2) = (((𝐴 + 𝐵) − 𝐶)↑2)) |
163 | 161, 162 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘((𝐴 + 𝐵) − 𝐶))↑2) = (((𝐴 + 𝐵) − 𝐶)↑2)) |
164 | 163 | oveq2d 5869 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2)) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + (((𝐴 + 𝐵) − 𝐶)↑2))) |
165 | 153, 159,
164 | 3brtr4d 4021 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((((abs‘(𝐴 −
𝐶))↑2) + (2 ·
((abs‘(𝐴 −
𝐶)) ·
(abs‘(𝐵 − 𝐶))))) + ((abs‘(𝐵 − 𝐶))↑2)) ≤ (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2))) |
166 | 11 | recnd 7948 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐴 − 𝐶)) ∈
ℂ) |
167 | 15 | recnd 7948 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(abs‘(𝐵 − 𝐶)) ∈
ℂ) |
168 | | binom2 10587 |
. . . 4
⊢
(((abs‘(𝐴
− 𝐶)) ∈ ℂ
∧ (abs‘(𝐵 −
𝐶)) ∈ ℂ) →
(((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶)))↑2) = ((((abs‘(𝐴 − 𝐶))↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶))))) + ((abs‘(𝐵 − 𝐶))↑2))) |
169 | 166, 167,
168 | syl2anc 409 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶)))↑2) = ((((abs‘(𝐴 − 𝐶))↑2) + (2 · ((abs‘(𝐴 − 𝐶)) · (abs‘(𝐵 − 𝐶))))) + ((abs‘(𝐵 − 𝐶))↑2))) |
170 | | binom2 10587 |
. . . 4
⊢ ((𝐶 ∈ ℂ ∧
(abs‘((𝐴 + 𝐵) − 𝐶)) ∈ ℂ) → ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2))) |
171 | 9, 64, 170 | syl2anc 409 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2) = (((𝐶↑2) + (2 · (𝐶 · (abs‘((𝐴 + 𝐵) − 𝐶))))) + ((abs‘((𝐴 + 𝐵) − 𝐶))↑2))) |
172 | 165, 169,
171 | 3brtr4d 4021 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶)))↑2) ≤ ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2)) |
173 | 11, 15 | readdcld 7949 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ∈ ℝ) |
174 | 3, 23 | readdcld 7949 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))) ∈ ℝ) |
175 | 10 | absge0d 11148 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
(abs‘(𝐴 − 𝐶))) |
176 | 14 | absge0d 11148 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
(abs‘(𝐵 − 𝐶))) |
177 | 11, 15, 175, 176 | addge0d 8441 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶)))) |
178 | 22 | absge0d 11148 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
(abs‘((𝐴 + 𝐵) − 𝐶))) |
179 | 3, 23, 57, 178 | addge0d 8441 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) → 0 ≤
(𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |
180 | 173, 174,
177, 179 | le2sqd 10641 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
(((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶))) ↔ (((abs‘(𝐴 − 𝐶)) + (abs‘(𝐵 − 𝐶)))↑2) ≤ ((𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))↑2))) |
181 | 172, 180 | mpbird 166 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ+) →
((abs‘(𝐴 −
𝐶)) + (abs‘(𝐵 − 𝐶))) ≤ (𝐶 + (abs‘((𝐴 + 𝐵) − 𝐶)))) |