Step | Hyp | Ref
| Expression |
1 | | elnn0 9137 |
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | 1zzd 9239 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) |
3 | | nnz 9231 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
4 | | elfzelz 9981 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ) |
5 | 4 | zcnd 9335 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) |
6 | 5 | adantl 275 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) |
7 | | id 19 |
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1)) |
8 | 2, 2, 3, 6, 7 | fsumshftm 11408 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1)) |
9 | | 1m1e0 8947 |
. . . . . . 7
⊢ (1
− 1) = 0 |
10 | 9 | oveq1i 5863 |
. . . . . 6
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) |
11 | 10 | sumeq1i 11326 |
. . . . 5
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) |
12 | 8, 11 | eqtrdi 2219 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)) |
13 | | elfznn0 10070 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) |
14 | 13 | adantl 275 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) |
15 | | bcnp1n 10693 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ ((𝑗 + 1)C𝑗) = (𝑗 + 1)) |
16 | 14, 15 | syl 14 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1)) |
17 | 14 | nn0cnd 9190 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ) |
18 | | ax-1cn 7867 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
19 | | addcom 8056 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑗 + 1) =
(1 + 𝑗)) |
20 | 17, 18, 19 | sylancl 411 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗)) |
21 | 20 | oveq1d 5868 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗)) |
22 | 16, 21 | eqtr3d 2205 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗)) |
23 | 22 | sumeq2dv 11331 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗)) |
24 | | 1nn0 9151 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
25 | | nnm1nn0 9176 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
26 | | bcxmas 11452 |
. . . . . 6
⊢ ((1
∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0)
→ (((1 + 1) + (𝑁
− 1))C(𝑁 − 1))
= Σ𝑗 ∈
(0...(𝑁 − 1))((1 +
𝑗)C𝑗)) |
27 | 24, 25, 26 | sylancr 412 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗)) |
28 | 23, 27 | eqtr4d 2206 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1))) |
29 | | 1cnd 7936 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
30 | | nncn 8886 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
31 | 29, 29, 30 | ppncand 8270 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((1 + 1)
+ (𝑁 − 1)) = (1 +
𝑁)) |
32 | 29, 30, 31 | comraddd 8076 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((1 + 1)
+ (𝑁 − 1)) = (𝑁 + 1)) |
33 | 32 | oveq1d 5868 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1))) |
34 | | nnnn0 9142 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
35 | | bcp1m1 10699 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
36 | 34, 35 | syl 14 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) |
37 | | sqval 10534 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁)) |
38 | 37 | eqcomd 2176 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2)) |
39 | | mulid2 7918 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (1
· 𝑁) = 𝑁) |
40 | 38, 39 | oveq12d 5871 |
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁)) |
41 | 30, 40 | syl 14 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁)) |
42 | 30, 30, 29, 41 | joinlmuladdmuld 7947 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁)) |
43 | 42 | oveq1d 5868 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2)) |
44 | 33, 36, 43 | 3eqtrd 2207 |
. . . 4
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2)) |
45 | 12, 28, 44 | 3eqtrd 2207 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
46 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) |
47 | | fz10 10002 |
. . . . . . 7
⊢ (1...0) =
∅ |
48 | 46, 47 | eqtrdi 2219 |
. . . . . 6
⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
49 | 48 | sumeq1d 11329 |
. . . . 5
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘) |
50 | | sum0 11351 |
. . . . 5
⊢
Σ𝑘 ∈
∅ 𝑘 =
0 |
51 | 49, 50 | eqtrdi 2219 |
. . . 4
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0) |
52 | | sq0i 10567 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁↑2) = 0) |
53 | | id 19 |
. . . . . . . 8
⊢ (𝑁 = 0 → 𝑁 = 0) |
54 | 52, 53 | oveq12d 5871 |
. . . . . . 7
⊢ (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0)) |
55 | | 00id 8060 |
. . . . . . 7
⊢ (0 + 0) =
0 |
56 | 54, 55 | eqtrdi 2219 |
. . . . . 6
⊢ (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0) |
57 | 56 | oveq1d 5868 |
. . . . 5
⊢ (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2)) |
58 | | 2cn 8949 |
. . . . . 6
⊢ 2 ∈
ℂ |
59 | | 2ap0 8971 |
. . . . . 6
⊢ 2 #
0 |
60 | 58, 59 | div0api 8663 |
. . . . 5
⊢ (0 / 2) =
0 |
61 | 57, 60 | eqtrdi 2219 |
. . . 4
⊢ (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0) |
62 | 51, 61 | eqtr4d 2206 |
. . 3
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
63 | 45, 62 | jaoi 711 |
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |
64 | 1, 63 | sylbi 120 |
1
⊢ (𝑁 ∈ ℕ0
→ Σ𝑘 ∈
(1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |