ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum GIF version

Theorem arisum 11267
Description: Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elnn0 8979 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1zzd 9081 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 nnz 9073 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 elfzelz 9806 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
54zcnd 9174 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
65adantl 275 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
7 id 19 . . . . . 6 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
82, 2, 3, 6, 7fsumshftm 11214 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1))
9 1m1e0 8789 . . . . . . 7 (1 − 1) = 0
109oveq1i 5784 . . . . . 6 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1110sumeq1i 11132 . . . . 5 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)
128, 11syl6eq 2188 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1))
13 elfznn0 9894 . . . . . . . . 9 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
1413adantl 275 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
15 bcnp1n 10505 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1614, 15syl 14 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1714nn0cnd 9032 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
18 ax-1cn 7713 . . . . . . . . 9 1 ∈ ℂ
19 addcom 7899 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 + 1) = (1 + 𝑗))
2017, 18, 19sylancl 409 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗))
2120oveq1d 5789 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗))
2216, 21eqtr3d 2174 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗))
2322sumeq2dv 11137 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
24 1nn0 8993 . . . . . 6 1 ∈ ℕ0
25 nnm1nn0 9018 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
26 bcxmas 11258 . . . . . 6 ((1 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2724, 25, 26sylancr 410 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2823, 27eqtr4d 2175 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)))
29 1cnd 7782 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
30 nncn 8728 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3129, 29, 30ppncand 8113 . . . . . . 7 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (1 + 𝑁))
3229, 30, 31comraddd 7919 . . . . . 6 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (𝑁 + 1))
3332oveq1d 5789 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1)))
34 nnnn0 8984 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
35 bcp1m1 10511 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
3634, 35syl 14 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
37 sqval 10351 . . . . . . . . . 10 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
3837eqcomd 2145 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2))
39 mulid2 7764 . . . . . . . . 9 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
4038, 39oveq12d 5792 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4130, 40syl 14 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4230, 30, 29, 41joinlmuladdmuld 7793 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁))
4342oveq1d 5789 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2))
4433, 36, 433eqtrd 2176 . . . 4 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2))
4512, 28, 443eqtrd 2176 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
46 oveq2 5782 . . . . . . 7 (𝑁 = 0 → (1...𝑁) = (1...0))
47 fz10 9826 . . . . . . 7 (1...0) = ∅
4846, 47syl6eq 2188 . . . . . 6 (𝑁 = 0 → (1...𝑁) = ∅)
4948sumeq1d 11135 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘)
50 sum0 11157 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
5149, 50syl6eq 2188 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0)
52 sq0i 10384 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
53 id 19 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
5452, 53oveq12d 5792 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0))
55 00id 7903 . . . . . . 7 (0 + 0) = 0
5654, 55syl6eq 2188 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0)
5756oveq1d 5789 . . . . 5 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2))
58 2cn 8791 . . . . . 6 2 ∈ ℂ
59 2ap0 8813 . . . . . 6 2 # 0
6058, 59div0api 8506 . . . . 5 (0 / 2) = 0
6157, 60syl6eq 2188 . . . 4 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0)
6251, 61eqtr4d 2175 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
6345, 62jaoi 705 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
641, 63sylbi 120 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 697   = wceq 1331  wcel 1480  c0 3363  (class class class)co 5774  cc 7618  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625  cmin 7933   / cdiv 8432  cn 8720  2c2 8771  0cn0 8977  ...cfz 9790  cexp 10292  Ccbc 10493  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  arisum2  11268
  Copyright terms: Public domain W3C validator