ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum GIF version

Theorem arisum 11505
Description: Arithmetic series sum of the first ๐‘ positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (๐‘ โˆˆ โ„•0 โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = (((๐‘โ†‘2) + ๐‘) / 2))
Distinct variable group:   ๐‘˜,๐‘

Proof of Theorem arisum
Dummy variable ๐‘— is distinct from all other variables.
StepHypRef Expression
1 elnn0 9177 . 2 (๐‘ โˆˆ โ„•0 โ†” (๐‘ โˆˆ โ„• โˆจ ๐‘ = 0))
2 1zzd 9279 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ 1 โˆˆ โ„ค)
3 nnz 9271 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„ค)
4 elfzelz 10024 . . . . . . . 8 (๐‘˜ โˆˆ (1...๐‘) โ†’ ๐‘˜ โˆˆ โ„ค)
54zcnd 9375 . . . . . . 7 (๐‘˜ โˆˆ (1...๐‘) โ†’ ๐‘˜ โˆˆ โ„‚)
65adantl 277 . . . . . 6 ((๐‘ โˆˆ โ„• โˆง ๐‘˜ โˆˆ (1...๐‘)) โ†’ ๐‘˜ โˆˆ โ„‚)
7 id 19 . . . . . 6 (๐‘˜ = (๐‘— + 1) โ†’ ๐‘˜ = (๐‘— + 1))
82, 2, 3, 6, 7fsumshftm 11452 . . . . 5 (๐‘ โˆˆ โ„• โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = ฮฃ๐‘— โˆˆ ((1 โˆ’ 1)...(๐‘ โˆ’ 1))(๐‘— + 1))
9 1m1e0 8987 . . . . . . 7 (1 โˆ’ 1) = 0
109oveq1i 5884 . . . . . 6 ((1 โˆ’ 1)...(๐‘ โˆ’ 1)) = (0...(๐‘ โˆ’ 1))
1110sumeq1i 11370 . . . . 5 ฮฃ๐‘— โˆˆ ((1 โˆ’ 1)...(๐‘ โˆ’ 1))(๐‘— + 1) = ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))(๐‘— + 1)
128, 11eqtrdi 2226 . . . 4 (๐‘ โˆˆ โ„• โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))(๐‘— + 1))
13 elfznn0 10113 . . . . . . . . 9 (๐‘— โˆˆ (0...(๐‘ โˆ’ 1)) โ†’ ๐‘— โˆˆ โ„•0)
1413adantl 277 . . . . . . . 8 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ ๐‘— โˆˆ โ„•0)
15 bcnp1n 10738 . . . . . . . 8 (๐‘— โˆˆ โ„•0 โ†’ ((๐‘— + 1)C๐‘—) = (๐‘— + 1))
1614, 15syl 14 . . . . . . 7 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ ((๐‘— + 1)C๐‘—) = (๐‘— + 1))
1714nn0cnd 9230 . . . . . . . . 9 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ ๐‘— โˆˆ โ„‚)
18 ax-1cn 7903 . . . . . . . . 9 1 โˆˆ โ„‚
19 addcom 8093 . . . . . . . . 9 ((๐‘— โˆˆ โ„‚ โˆง 1 โˆˆ โ„‚) โ†’ (๐‘— + 1) = (1 + ๐‘—))
2017, 18, 19sylancl 413 . . . . . . . 8 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ (๐‘— + 1) = (1 + ๐‘—))
2120oveq1d 5889 . . . . . . 7 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ ((๐‘— + 1)C๐‘—) = ((1 + ๐‘—)C๐‘—))
2216, 21eqtr3d 2212 . . . . . 6 ((๐‘ โˆˆ โ„• โˆง ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))) โ†’ (๐‘— + 1) = ((1 + ๐‘—)C๐‘—))
2322sumeq2dv 11375 . . . . 5 (๐‘ โˆˆ โ„• โ†’ ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))(๐‘— + 1) = ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))((1 + ๐‘—)C๐‘—))
24 1nn0 9191 . . . . . 6 1 โˆˆ โ„•0
25 nnm1nn0 9216 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ (๐‘ โˆ’ 1) โˆˆ โ„•0)
26 bcxmas 11496 . . . . . 6 ((1 โˆˆ โ„•0 โˆง (๐‘ โˆ’ 1) โˆˆ โ„•0) โ†’ (((1 + 1) + (๐‘ โˆ’ 1))C(๐‘ โˆ’ 1)) = ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))((1 + ๐‘—)C๐‘—))
2724, 25, 26sylancr 414 . . . . 5 (๐‘ โˆˆ โ„• โ†’ (((1 + 1) + (๐‘ โˆ’ 1))C(๐‘ โˆ’ 1)) = ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))((1 + ๐‘—)C๐‘—))
2823, 27eqtr4d 2213 . . . 4 (๐‘ โˆˆ โ„• โ†’ ฮฃ๐‘— โˆˆ (0...(๐‘ โˆ’ 1))(๐‘— + 1) = (((1 + 1) + (๐‘ โˆ’ 1))C(๐‘ โˆ’ 1)))
29 1cnd 7972 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ 1 โˆˆ โ„‚)
30 nncn 8926 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„‚)
3129, 29, 30ppncand 8307 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ ((1 + 1) + (๐‘ โˆ’ 1)) = (1 + ๐‘))
3229, 30, 31comraddd 8113 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ((1 + 1) + (๐‘ โˆ’ 1)) = (๐‘ + 1))
3332oveq1d 5889 . . . . 5 (๐‘ โˆˆ โ„• โ†’ (((1 + 1) + (๐‘ โˆ’ 1))C(๐‘ โˆ’ 1)) = ((๐‘ + 1)C(๐‘ โˆ’ 1)))
34 nnnn0 9182 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ๐‘ โˆˆ โ„•0)
35 bcp1m1 10744 . . . . . 6 (๐‘ โˆˆ โ„•0 โ†’ ((๐‘ + 1)C(๐‘ โˆ’ 1)) = (((๐‘ + 1) ยท ๐‘) / 2))
3634, 35syl 14 . . . . 5 (๐‘ โˆˆ โ„• โ†’ ((๐‘ + 1)C(๐‘ โˆ’ 1)) = (((๐‘ + 1) ยท ๐‘) / 2))
37 sqval 10577 . . . . . . . . . 10 (๐‘ โˆˆ โ„‚ โ†’ (๐‘โ†‘2) = (๐‘ ยท ๐‘))
3837eqcomd 2183 . . . . . . . . 9 (๐‘ โˆˆ โ„‚ โ†’ (๐‘ ยท ๐‘) = (๐‘โ†‘2))
39 mullid 7954 . . . . . . . . 9 (๐‘ โˆˆ โ„‚ โ†’ (1 ยท ๐‘) = ๐‘)
4038, 39oveq12d 5892 . . . . . . . 8 (๐‘ โˆˆ โ„‚ โ†’ ((๐‘ ยท ๐‘) + (1 ยท ๐‘)) = ((๐‘โ†‘2) + ๐‘))
4130, 40syl 14 . . . . . . 7 (๐‘ โˆˆ โ„• โ†’ ((๐‘ ยท ๐‘) + (1 ยท ๐‘)) = ((๐‘โ†‘2) + ๐‘))
4230, 30, 29, 41joinlmuladdmuld 7984 . . . . . 6 (๐‘ โˆˆ โ„• โ†’ ((๐‘ + 1) ยท ๐‘) = ((๐‘โ†‘2) + ๐‘))
4342oveq1d 5889 . . . . 5 (๐‘ โˆˆ โ„• โ†’ (((๐‘ + 1) ยท ๐‘) / 2) = (((๐‘โ†‘2) + ๐‘) / 2))
4433, 36, 433eqtrd 2214 . . . 4 (๐‘ โˆˆ โ„• โ†’ (((1 + 1) + (๐‘ โˆ’ 1))C(๐‘ โˆ’ 1)) = (((๐‘โ†‘2) + ๐‘) / 2))
4512, 28, 443eqtrd 2214 . . 3 (๐‘ โˆˆ โ„• โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = (((๐‘โ†‘2) + ๐‘) / 2))
46 oveq2 5882 . . . . . . 7 (๐‘ = 0 โ†’ (1...๐‘) = (1...0))
47 fz10 10045 . . . . . . 7 (1...0) = โˆ…
4846, 47eqtrdi 2226 . . . . . 6 (๐‘ = 0 โ†’ (1...๐‘) = โˆ…)
4948sumeq1d 11373 . . . . 5 (๐‘ = 0 โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = ฮฃ๐‘˜ โˆˆ โˆ… ๐‘˜)
50 sum0 11395 . . . . 5 ฮฃ๐‘˜ โˆˆ โˆ… ๐‘˜ = 0
5149, 50eqtrdi 2226 . . . 4 (๐‘ = 0 โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = 0)
52 sq0i 10611 . . . . . . . 8 (๐‘ = 0 โ†’ (๐‘โ†‘2) = 0)
53 id 19 . . . . . . . 8 (๐‘ = 0 โ†’ ๐‘ = 0)
5452, 53oveq12d 5892 . . . . . . 7 (๐‘ = 0 โ†’ ((๐‘โ†‘2) + ๐‘) = (0 + 0))
55 00id 8097 . . . . . . 7 (0 + 0) = 0
5654, 55eqtrdi 2226 . . . . . 6 (๐‘ = 0 โ†’ ((๐‘โ†‘2) + ๐‘) = 0)
5756oveq1d 5889 . . . . 5 (๐‘ = 0 โ†’ (((๐‘โ†‘2) + ๐‘) / 2) = (0 / 2))
58 2cn 8989 . . . . . 6 2 โˆˆ โ„‚
59 2ap0 9011 . . . . . 6 2 # 0
6058, 59div0api 8702 . . . . 5 (0 / 2) = 0
6157, 60eqtrdi 2226 . . . 4 (๐‘ = 0 โ†’ (((๐‘โ†‘2) + ๐‘) / 2) = 0)
6251, 61eqtr4d 2213 . . 3 (๐‘ = 0 โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = (((๐‘โ†‘2) + ๐‘) / 2))
6345, 62jaoi 716 . 2 ((๐‘ โˆˆ โ„• โˆจ ๐‘ = 0) โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = (((๐‘โ†‘2) + ๐‘) / 2))
641, 63sylbi 121 1 (๐‘ โˆˆ โ„•0 โ†’ ฮฃ๐‘˜ โˆˆ (1...๐‘)๐‘˜ = (((๐‘โ†‘2) + ๐‘) / 2))
Colors of variables: wff set class
Syntax hints:   โ†’ wi 4   โˆง wa 104   โˆจ wo 708   = wceq 1353   โˆˆ wcel 2148  โˆ…c0 3422  (class class class)co 5874  โ„‚cc 7808  0cc0 7810  1c1 7811   + caddc 7813   ยท cmul 7815   โˆ’ cmin 8127   / cdiv 8628  โ„•cn 8918  2c2 8969  โ„•0cn0 9175  ...cfz 10007  โ†‘cexp 10518  Ccbc 10726  ฮฃcsu 11360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-fz 10008  df-fzo 10142  df-seqfrec 10445  df-exp 10519  df-fac 10705  df-bc 10727  df-ihash 10755  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286  df-sumdc 11361
This theorem is referenced by:  arisum2  11506
  Copyright terms: Public domain W3C validator