| Step | Hyp | Ref
 | Expression | 
| 1 |   | elnn0 9251 | 
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) | 
| 2 |   | 1zzd 9353 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) | 
| 3 |   | nnz 9345 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) | 
| 4 |   | elfzelz 10100 | 
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ) | 
| 5 | 4 | zcnd 9449 | 
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ) | 
| 6 | 5 | adantl 277 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ) | 
| 7 |   | id 19 | 
. . . . . 6
⊢ (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1)) | 
| 8 | 2, 2, 3, 6, 7 | fsumshftm 11610 | 
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1)) | 
| 9 |   | 1m1e0 9059 | 
. . . . . . 7
⊢ (1
− 1) = 0 | 
| 10 | 9 | oveq1i 5932 | 
. . . . . 6
⊢ ((1
− 1)...(𝑁 − 1))
= (0...(𝑁 −
1)) | 
| 11 | 10 | sumeq1i 11528 | 
. . . . 5
⊢
Σ𝑗 ∈ ((1
− 1)...(𝑁 −
1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) | 
| 12 | 8, 11 | eqtrdi 2245 | 
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)) | 
| 13 |   | elfznn0 10189 | 
. . . . . . . . 9
⊢ (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0) | 
| 14 | 13 | adantl 277 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0) | 
| 15 |   | bcnp1n 10851 | 
. . . . . . . 8
⊢ (𝑗 ∈ ℕ0
→ ((𝑗 + 1)C𝑗) = (𝑗 + 1)) | 
| 16 | 14, 15 | syl 14 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1)) | 
| 17 | 14 | nn0cnd 9304 | 
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ) | 
| 18 |   | ax-1cn 7972 | 
. . . . . . . . 9
⊢ 1 ∈
ℂ | 
| 19 |   | addcom 8163 | 
. . . . . . . . 9
⊢ ((𝑗 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑗 + 1) =
(1 + 𝑗)) | 
| 20 | 17, 18, 19 | sylancl 413 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗)) | 
| 21 | 20 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗)) | 
| 22 | 16, 21 | eqtr3d 2231 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗)) | 
| 23 | 22 | sumeq2dv 11533 | 
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗)) | 
| 24 |   | 1nn0 9265 | 
. . . . . 6
⊢ 1 ∈
ℕ0 | 
| 25 |   | nnm1nn0 9290 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) | 
| 26 |   | bcxmas 11654 | 
. . . . . 6
⊢ ((1
∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0)
→ (((1 + 1) + (𝑁
− 1))C(𝑁 − 1))
= Σ𝑗 ∈
(0...(𝑁 − 1))((1 +
𝑗)C𝑗)) | 
| 27 | 24, 25, 26 | sylancr 414 | 
. . . . 5
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗)) | 
| 28 | 23, 27 | eqtr4d 2232 | 
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1))) | 
| 29 |   | 1cnd 8042 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) | 
| 30 |   | nncn 8998 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) | 
| 31 | 29, 29, 30 | ppncand 8377 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((1 + 1)
+ (𝑁 − 1)) = (1 +
𝑁)) | 
| 32 | 29, 30, 31 | comraddd 8183 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((1 + 1)
+ (𝑁 − 1)) = (𝑁 + 1)) | 
| 33 | 32 | oveq1d 5937 | 
. . . . 5
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1))) | 
| 34 |   | nnnn0 9256 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) | 
| 35 |   | bcp1m1 10857 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | 
| 36 | 34, 35 | syl 14 | 
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2)) | 
| 37 |   | sqval 10689 | 
. . . . . . . . . 10
⊢ (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁)) | 
| 38 | 37 | eqcomd 2202 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2)) | 
| 39 |   | mullid 8024 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℂ → (1
· 𝑁) = 𝑁) | 
| 40 | 38, 39 | oveq12d 5940 | 
. . . . . . . 8
⊢ (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁)) | 
| 41 | 30, 40 | syl 14 | 
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁)) | 
| 42 | 30, 30, 29, 41 | joinlmuladdmuld 8054 | 
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁)) | 
| 43 | 42 | oveq1d 5937 | 
. . . . 5
⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2)) | 
| 44 | 33, 36, 43 | 3eqtrd 2233 | 
. . . 4
⊢ (𝑁 ∈ ℕ → (((1 + 1)
+ (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2)) | 
| 45 | 12, 28, 44 | 3eqtrd 2233 | 
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | 
| 46 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | 
| 47 |   | fz10 10121 | 
. . . . . . 7
⊢ (1...0) =
∅ | 
| 48 | 46, 47 | eqtrdi 2245 | 
. . . . . 6
⊢ (𝑁 = 0 → (1...𝑁) = ∅) | 
| 49 | 48 | sumeq1d 11531 | 
. . . . 5
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘) | 
| 50 |   | sum0 11553 | 
. . . . 5
⊢
Σ𝑘 ∈
∅ 𝑘 =
0 | 
| 51 | 49, 50 | eqtrdi 2245 | 
. . . 4
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0) | 
| 52 |   | sq0i 10723 | 
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁↑2) = 0) | 
| 53 |   | id 19 | 
. . . . . . . 8
⊢ (𝑁 = 0 → 𝑁 = 0) | 
| 54 | 52, 53 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0)) | 
| 55 |   | 00id 8167 | 
. . . . . . 7
⊢ (0 + 0) =
0 | 
| 56 | 54, 55 | eqtrdi 2245 | 
. . . . . 6
⊢ (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0) | 
| 57 | 56 | oveq1d 5937 | 
. . . . 5
⊢ (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2)) | 
| 58 |   | 2cn 9061 | 
. . . . . 6
⊢ 2 ∈
ℂ | 
| 59 |   | 2ap0 9083 | 
. . . . . 6
⊢ 2 #
0 | 
| 60 | 58, 59 | div0api 8773 | 
. . . . 5
⊢ (0 / 2) =
0 | 
| 61 | 57, 60 | eqtrdi 2245 | 
. . . 4
⊢ (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0) | 
| 62 | 51, 61 | eqtr4d 2232 | 
. . 3
⊢ (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | 
| 63 | 45, 62 | jaoi 717 | 
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) | 
| 64 | 1, 63 | sylbi 121 | 
1
⊢ (𝑁 ∈ ℕ0
→ Σ𝑘 ∈
(1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2)) |